2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷含解析_第1頁
2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷含解析_第2頁
2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷含解析_第3頁
2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷含解析_第4頁
2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆遼寧省盤錦市二中高三(最后沖刺)數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.空間點到平面的距離定義如下:過空間一點作平面的垂線,這個點和垂足之間的距離叫做這個點到這個平面的距離.已知平面,,兩兩互相垂直,點,點到,的距離都是3,點是上的動點,滿足到的距離與到點的距離相等,則點的軌跡上的點到的距離的最小值是()A. B.3 C. D.2.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.3.雙曲線的漸近線方程為()A. B.C. D.4.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.5.函數的部分圖象如圖所示,則()A.6 B.5 C.4 D.36.已知角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則()A. B. C. D.7.如圖所示,三國時代數學家趙爽在《周髀算經》中利用弦圖,給出了勾股定理的絕妙證明.圖中包含四個全等的直角三角形及一個小正方形(陰影),設直角三角形有一內角為,若向弦圖內隨機拋擲500顆米粒(米粒大小忽略不計,?。?,則落在小正方形(陰影)內的米粒數大約為()A.134 B.67 C.182 D.1088.如圖,在平面四邊形ABCD中,若點E為邊CD上的動點,則的最小值為()A. B. C. D.9.函數的圖象如圖所示,為了得到的圖象,可將的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位10.一個陶瓷圓盤的半徑為,中間有一個邊長為的正方形花紋,向盤中投入1000粒米后,發現落在正方形花紋上的米共有51粒,據此估計圓周率的值為(精確到0.001)()A.3.132 B.3.137 C.3.142 D.3.14711.已知命題,且是的必要不充分條件,則實數的取值范圍為()A. B. C. D.12.為比較甲、乙兩名高二學生的數學素養,對課程標準中規定的數學六大素養進行指標測驗(指標值滿分為5分,分值高者為優),根據測驗情況繪制了如圖所示的六大素養指標雷達圖,則下面敘述正確的是()A.乙的數據分析素養優于甲B.乙的數學建模素養優于數學抽象素養C.甲的六大素養整體水平優于乙D.甲的六大素養中數據分析最差二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,若方程的解為,(),則_______;_______.14.若,則________,________.15.在中,,點是邊的中點,則__________,________.16.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,直三棱柱中,底面為等腰直角三角形,,,,分別為,的中點,為棱上一點,若平面.(1)求線段的長;(2)求二面角的余弦值.18.(12分)已知是等差數列,滿足,,數列滿足,,且是等比數列.(1)求數列和的通項公式;(2)求數列的前項和.19.(12分)如圖1,四邊形為直角梯形,,,,,,為線段上一點,滿足,為的中點,現將梯形沿折疊(如圖2),使平面平面.(1)求證:平面平面;(2)能否在線段上找到一點(端點除外)使得直線與平面所成角的正弦值為?若存在,試確定點的位置;若不存在,請說明理由.20.(12分)已知,,,.(1)求的值;(2)求的值.21.(12分)已知,函數有最小值7.(1)求的值;(2)設,,求證:.22.(10分)已知在ΔABC中,角A,B,C的對邊分別為a,b,c,且cosB(1)求b的值;(2)若cosB+3sin

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

建立平面直角坐標系,將問題轉化為點的軌跡上的點到軸的距離的最小值,利用到軸的距離等于到點的距離得到點軌跡方程,得到,進而得到所求最小值.【詳解】如圖,原題等價于在直角坐標系中,點,是第一象限內的動點,滿足到軸的距離等于點到點的距離,求點的軌跡上的點到軸的距離的最小值.設,則,化簡得:,則,解得:,即點的軌跡上的點到的距離的最小值是.故選:.【點睛】本題考查立體幾何中點面距離最值的求解,關鍵是能夠準確求得動點軌跡方程,進而根據軌跡方程構造不等關系求得最值.2、B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.3、A【解析】

將雙曲線方程化為標準方程為,其漸近線方程為,化簡整理即得漸近線方程.【詳解】雙曲線得,則其漸近線方程為,整理得.故選:A【點睛】本題主要考查了雙曲線的標準方程,雙曲線的簡單性質的應用.4、D【解析】

先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.5、A【解析】

根據正切函數的圖象求出A、B兩點的坐標,再求出向量的坐標,根據向量數量積的坐標運算求出結果.【詳解】由圖象得,令=0,即=kπ,k=0時解得x=2,令=1,即,解得x=3,∴A(2,0),B(3,1),∴,∴.故選:A.【點睛】本題考查正切函數的圖象,平面向量數量積的運算,屬于綜合題,但是難度不大,解題關鍵是利用圖象與正切函數圖象求出坐標,再根據向量數量積的坐標運算可得結果,屬于簡單題.6、A【解析】

由已知可得,根據二倍角公式即可求解.【詳解】角的頂點與原點重合,始邊與軸的正半軸重合,終邊經過點,則,.故選:A.【點睛】本題考查三角函數定義、二倍角公式,考查計算求解能力,屬于基礎題.7、B【解析】

根據幾何概型的概率公式求出對應面積之比即可得到結論.【詳解】解:設大正方形的邊長為1,則小直角三角形的邊長為,

則小正方形的邊長為,小正方形的面積,

則落在小正方形(陰影)內的米粒數大約為,

故選:B.【點睛】本題主要考查幾何概型的概率的應用,求出對應的面積之比是解決本題的關鍵.8、A【解析】

分析:由題意可得為等腰三角形,為等邊三角形,把數量積分拆,設,數量積轉化為關于t的函數,用函數可求得最小值。詳解:連接BD,取AD中點為O,可知為等腰三角形,而,所以為等邊三角形,。設=所以當時,上式取最小值,選A.點睛:本題考查的是平面向量基本定理與向量的拆分,需要選擇合適的基底,再把其它向量都用基底表示。同時利用向量共線轉化為函數求最值。9、C【解析】

根據正弦型函數的圖象得到,結合圖像變換知識得到答案.【詳解】由圖象知:,∴.又時函數值最大,所以.又,∴,從而,,只需將的圖象向左平移個單位即可得到的圖象,故選C.【點睛】已知函數的圖象求解析式(1).(2)由函數的周期求(3)利用“五點法”中相對應的特殊點求,一般用最高點或最低點求.10、B【解析】

結合隨機模擬概念和幾何概型公式計算即可【詳解】如圖,由幾何概型公式可知:.故選:B【點睛】本題考查隨機模擬的概念和幾何概型,屬于基礎題11、D【解析】

求出命題不等式的解為,是的必要不充分條件,得是的子集,建立不等式求解.【詳解】解:命題,即:,是的必要不充分條件,,,解得.實數的取值范圍為.故選:.【點睛】本題考查根據充分、必要條件求參數范圍,其思路方法:(1)解決此類問題一般是把充分條件、必要條件或充要條件轉化為集合之間的關系,然后根據集合之間關系列出關于參數的不等式(組)求解.(2)求解參數的取值范圍時,一定要注意區間端點值的檢驗.12、C【解析】

根據題目所給圖像,填寫好表格,由表格數據選出正確選項.【詳解】根據雷達圖得到如下數據:數學抽象邏輯推理數學建模直觀想象數學運算數據分析甲454545乙343354由數據可知選C.【點睛】本題考查統計問題,考查數據處理能力和應用意識.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出在上的對稱軸,依據對稱性可得的值;由可得,依據可求出的值.【詳解】解:令,解得因為,所以關于對稱.則.由,則由可知,,又因為,所以,則,即故答案為:;.【點睛】本題考查了三角函數的對稱軸,考查了誘導公式,考查了同角三角函數的基本關系.本題的易錯點在于沒有正確判斷的取值范圍,導致求出.在求的對稱軸時,常用整體代入法,即令進行求解.14、【解析】

根據誘導公式和二倍角公式計算得到答案.【詳解】,故.故答案為:;.【點睛】本題考查了誘導公式和二倍角公式,屬于簡單題.15、2【解析】

根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.16、【解析】

根據雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】

(1)先證得,設與交于點,在中解直角三角形求得,由此求得的值.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出二面角的余弦值.【詳解】(1)由題意,,設與交于點,在中,可求得,則,可求得,則(2)以為原點,方向為軸,方向為軸,方向為軸,建立空間直角坐標系.,,,,,易得平面的法向量為.,,易得平面的法向量為.設二面角為,由圖可知為銳角,所以.即二面角的余弦值為.【點睛】本小題主要考查根據線面垂直求邊長,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1),;(2)【解析】試題分析:(1)利用等差數列,等比數列的通項公式先求得公差和公比,即得到結論;(2)利用分組求和法,由等差數列及等比數列的前n項和公式即可求得數列前n項和.試題解析:(Ⅰ)設等差數列{an}的公差為d,由題意得d===1.∴an=a1+(n﹣1)d=1n設等比數列{bn﹣an}的公比為q,則q1===8,∴q=2,∴bn﹣an=(b1﹣a1)qn﹣1=2n﹣1,∴bn=1n+2n﹣1(Ⅱ)由(Ⅰ)知bn=1n+2n﹣1,∵數列{1n}的前n項和為n(n+1),數列{2n﹣1}的前n項和為1×=2n﹣1,∴數列{bn}的前n項和為;考點:1.等差數列性質的綜合應用;2.等比數列性質的綜合應用;1.數列求和.19、(1)證明見解析;(2)存在點是線段的中點,使得直線與平面所成角的正弦值為.【解析】

(1)在直角梯形中,根據,,得為等邊三角形,再由余弦定理求得,滿足,得到,再根據平面平面,利用面面垂直的性質定理證明.(2)建立空間直角坐標系:假設在上存在一點使直線與平面所成角的正弦值為,且,,求得平面的一個法向量,再利用線面角公式求解.【詳解】(1)證明:在直角梯形中,,,因此為等邊三角形,從而,又,由余弦定理得:,∴,即,且折疊后與位置關系不變,又∵平面平面,且平面平面.∴平面,∵平面,∴平面平面.(2)∵為等邊三角形,為的中點,∴,又∵平面平面,且平面平面,∴平面,取的中點,連結,則,從而,以為坐標原點建立如圖所示的空間直角坐標系:則,,則,假設在上存在一點使直線與平面所成角的正弦值為,且,,∵,∴,故,∴,又,該平面的法向量為,,令得,∴,解得或(舍),綜上可知,存在點是線段的中點,使得直線與平面所成角的正弦值為.【點睛】本題主要考查面面垂直的性質定理和向量法研究線面角問題,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.20、(1)(2)【解析】

(1)先利用同角的三角函數關系解得和,再由,利用正弦的差角公式求解即可;(2)由(1)可得和,利用余弦的二倍角公式求得,再由正切的和角公式求解即可.【詳解】解:(1)因為,所以又,故,所以,所以(2)由(1)得,,,所以,所以,因為且,即,解得,因為,所以,所以,所以,所以【點睛】本題考查已知三角函數值求值,考查三角函數的化簡,考查和角公式,二倍角公式,同角的三角函數關系的應用,考查運算能力.21、(1).(2)見解析【解析】

(1)由絕對值三解不等式可得,所以當時,,即可求出參數的值;(2)由,可得,再利用基本不等式求出的最小值,即可得證;【詳解】解:(1)∵,∴當時,,解得.(2)∵,∴,∴,當且僅當,即,時,等號成立.∴.【點睛】本題主要考查絕對值三角不等式及基本不等式的簡單應用,屬于中檔題.22、(1)b=32【解析】試題分析:(1)本問考查解三角形中的的“邊角互化”.由于求b的值,所以可以考慮到根據余弦定理將cosB,cosC分別用邊表示,再根據正弦定理可以將sinAsinC轉化為ac,于是可

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論