




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆上海市莘莊中學高考沖刺數學模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,則在上不單調的一個充分不必要條件可以是()A. B. C.或 D.2.已知函數若關于的方程有六個不相等的實數根,則實數的取值范圍為()A. B. C. D.3.達芬奇的經典之作《蒙娜麗莎》舉世聞名.如圖,畫中女子神秘的微笑,,數百年來讓無數觀賞者人迷.某業余愛好者對《蒙娜麗莎》的縮小影像作品進行了粗略測繪,將畫中女子的嘴唇近似看作一個圓弧,在嘴角處作圓弧的切線,兩條切線交于點,測得如下數據:(其中).根據測量得到的結果推算:將《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角大約等于()A. B. C. D.4.為虛數單位,則的虛部為()A. B. C. D.5.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件6.a為正實數,i為虛數單位,,則a=()A.2 B. C. D.17.函數的圖象可能是()A. B. C. D.8.如圖在一個的二面角的棱有兩個點,線段分別在這個二面角的兩個半平面內,且都垂直于棱,且,則的長為()A.4 B. C.2 D.9.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要11.已知函數的圖象的一條對稱軸為,將函數的圖象向右平行移動個單位長度后得到函數圖象,則函數的解析式為()A. B.C. D.12.如圖所示,網格紙上小正方形的邊長為1,粗線畫出的是由一個棱柱挖去一個棱錐后的幾何體的三視圖,則該幾何體的體積為A.72 B.64 C.48 D.32二、填空題:本題共4小題,每小題5分,共20分。13.設是公差不為0的等差數列的前項和,且,則______.14.已知向量,,則______.15.若將函數的圖象沿軸向右平移個單位后所得的圖象與的圖象關于軸對稱,則的最小值為________________.16.在的展開式中,項的系數是__________(用數字作答).三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某商店舉行促銷反饋活動,顧客購物每滿200元,有一次抽獎機會(即滿200元可以抽獎一次,滿400元可以抽獎兩次,依次類推).抽獎的規則如下:在一個不透明口袋中裝有編號分別為1,2,3,4,5的5個完全相同的小球,顧客每次從口袋中摸出一個小球,共摸三次,每次摸出的小球均不放回口袋,若摸得的小球編號一次比一次大(如1,2,5),則獲得一等獎,獎金40元;若摸得的小球編號一次比一次小(如5,3,1),則獲得二等獎,獎金20元;其余情況獲得三等獎,獎金10元.(1)某人抽獎一次,求其獲獎金額X的概率分布和數學期望;(2)趙四購物恰好滿600元,假設他不放棄每次抽獎機會,求他獲得的獎金恰好為60元的概率.18.(12分)設不等式的解集為M,.(1)證明:;(2)比較與的大小,并說明理由.19.(12分)已知數列滿足,等差數列滿足,(1)分別求出,的通項公式;(2)設數列的前n項和為,數列的前n項和為證明:.20.(12分)已知與有兩個不同的交點,其橫坐標分別為().(1)求實數的取值范圍;(2)求證:.21.(12分)已知橢圓的短軸長為,離心率,其右焦點為.(1)求橢圓的方程;(2)過作夾角為的兩條直線分別交橢圓于和,求的取值范圍.22.(10分)已知x∈R,設,,記函數.(1)求函數取最小值時x的取值范圍;(2)設△ABC的角A,B,C所對的邊分別為a,b,c,若,,求△ABC的面積S的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
先求函數在上不單調的充要條件,即在上有解,即可得出結論.【詳解】,若在上不單調,令,則函數對稱軸方程為在區間上有零點(可以用二分法求得).當時,顯然不成立;當時,只需或,解得或.故選:D.【點睛】本題考查含參數的函數的單調性及充分不必要條件,要注意二次函數零點的求法,屬于中檔題.2、B【解析】
令,則,由圖象分析可知在上有兩個不同的根,再利用一元二次方程根的分布即可解決.【詳解】令,則,如圖與頂多只有3個不同交點,要使關于的方程有六個不相等的實數根,則有兩個不同的根,設由根的分布可知,,解得.故選:B.【點睛】本題考查復合方程根的個數問題,涉及到一元二次方程根的分布,考查學生轉化與化歸和數形結合的思想,是一道中檔題.3、A【解析】
由已知,設.可得.于是可得,進而得出結論.【詳解】解:依題意,設.則.,.設《蒙娜麗莎》中女子的嘴唇視作的圓弧對應的圓心角為.則,.故選:A.【點睛】本題考查了直角三角形的邊角關系、三角函數的單調性、切線的性質,考查了推理能力與計算能力,屬于中檔題.4、C【解析】
利用復數的運算法則計算即可.【詳解】,故虛部為.故選:C.【點睛】本題考查復數的運算以及復數的概念,注意復數的虛部為,不是,本題為基礎題,也是易錯題.5、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.6、B【解析】
,選B.7、A【解析】
先判斷函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】函數的定義域為,,該函數為偶函數,排除B、D選項;當時,,排除C選項.故選:A.【點睛】本題考查根據函數的解析式辨別函數的圖象,一般分析函數的定義域、奇偶性、單調性、零點以及函數值符號,結合排除法得出結果,考查分析問題和解決問題的能力,屬于中等題.8、A【解析】
由,兩邊平方后展開整理,即可求得,則的長可求.【詳解】解:,,,,,,.,,故選:.【點睛】本題考查了向量的多邊形法則、數量積的運算性質、向量垂直與數量積的關系,考查了空間想象能力,考查了推理能力與計算能力,屬于中檔題.9、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.10、B【解析】
根據充分必要條件的概念進行判斷.【詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【點睛】本題主要考查空間中線線,線面,面面的位置關系,以及充要條件的判斷,考查學生綜合運用知識的能力.解決充要條件判斷問題,關鍵是要弄清楚誰是條件,誰是結論.11、C【解析】
根據輔助角公式化簡三角函數式,結合為函數的一條對稱軸可求得,代入輔助角公式得的解析式.根據三角函數圖像平移變換,即可求得函數的解析式.【詳解】函數,由輔助角公式化簡可得,因為為函數圖象的一條對稱軸,代入可得,即,化簡可解得,即,所以將函數的圖象向右平行移動個單位長度可得,則,故選:C.【點睛】本題考查了輔助角化簡三角函數式的應用,三角函數對稱軸的應用,三角函數圖像平移變換的應用,屬于中檔題.12、B【解析】
由三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,利用體積公式,即可求解。【詳解】由題意,幾何體的三視圖可知該幾何體是一個底面邊長為4的正方形,高為5的正四棱柱,挖去一個底面邊長為4,高為3的正四棱錐,所以幾何體的體積為,故選B。【點睛】本題考查了幾何體的三視圖及體積的計算,在由三視圖還原為空間幾何體的實際形狀時,要根據三視圖的規則,空間幾何體的可見輪廓線在三視圖中為實線,不可見輪廓線在三視圖中為虛線。求解以三視圖為載體的空間幾何體的表面積與體積的關鍵是由三視圖確定直觀圖的形狀以及直觀圖中線面的位置關系和數量關系,利用相應公式求解。二、填空題:本題共4小題,每小題5分,共20分。13、18【解析】
先由,可得,再結合等差數列的前項和公式求解即可.【詳解】解:因為,所以,.故答案為:18.【點睛】本題考查了等差數列基本量的運算,重點考查了等差數列的前項和公式,屬基礎題.14、【解析】
求出,然后由模的平方轉化為向量的平方,利用數量積的運算計算.【詳解】由題意得,.,.,,.故答案為:.【點睛】本題考查求向量的模,掌握數量積的定義與運算律是解題基礎.本題關鍵是用數量積的定義把模的運算轉化為數量積的運算.15、【解析】
由題意利用函數的圖象變換規律,三角函數的圖像的對稱性,求得的最小值.【詳解】解:將函數的圖象沿軸向右平移個單位長度,可得的圖象.根據圖象與的圖象關于軸對稱,可得,,,即時,的最小值為.故答案為:.【點睛】本題主要考查函數的圖象變換規律,正弦函數圖像的對稱性,屬于基礎題.16、【解析】的展開式的通項為:.令,得.答案為:-40.點睛:求二項展開式有關問題的常見類型及解題策略(1)求展開式中的特定項.可依據條件寫出第r+1項,再由特定項的特點求出r值即可.(2)已知展開式的某項,求特定項的系數.可由某項得出參數項,再由通項寫出第r+1項,由特定項得出r值,最后求出其參數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布見解析,期望為;(2).【解析】
(1)先明確X的可能取值,分別求解其概率,然后寫出分布列,利用期望公式可求期望;(2)獲得的獎金恰好為60元,可能是三次二等獎,也可能是一次一等獎,兩次三等獎,然后分別求解概率即可.【詳解】(1)由題意知,隨機變量X的可能取值為10,20,40且,,所以,即隨機變量X的概率分布為X102040P所以隨機變量X的數學期望.(2)由題意知,趙四有三次抽獎機會,設恰好獲得60元為事件A,因為60=20×3=40+10+10,所以.【點睛】本題主要考查隨機變量的分布列及數學期望,明確隨機變量的所有取值是求解的第一步,再求解對應的概率,側重考查數學建模的核心素養.18、(1)證明見解析;(2).【解析】試題分析:(1)首先求得集合M,然后結合絕對值不等式的性質即可證得題中的結論;(2)利用平方做差的方法可證得|1-4ab|>2|a-b|.試題解析:(Ⅰ)證明:記f(x)=|x-1|-|x+2|,則f(x)=,所以解得-<x<,故M=(-,).所以,||≤|a|+|b|<×+×=.(Ⅱ)由(Ⅰ)得0≤a2<,0≤b2<.|1-4ab|2-4|a-b|2=(1-8ab+16a2b2)-4(a2-2ab+b2)=4(a2-1)(b2-1)>0.所以,|1-4ab|>2|a-b|.19、(1)(2)證明見解析【解析】
(1)因為,所以,所以,即,又因為,所以數列為等差數列,且公差為1,首項為1,則,即.設的公差為,則,所以(),則(),所以,因此,綜上,.(2)設數列的前n項和為,則兩式相減得,所以,設則,所以.20、(1);(2)見解析【解析】
(1)利用導數研究的單調性,分析函數性質,數形結合,即得解;(2)構造函數,可證得:,,分析直線,與從左到右交點的橫坐標,在,處的切線即得解.【詳解】(1)設函數,,令,令故在單調遞減,在單調遞增,∴,∵時;;時.(2)①過點,的直線為,則令,,,.②過點,的直線為,則,在上單調遞增.③設直線,與從左到右交點的橫坐標依次為,,由圖知.④在,處的切線分別為,,同理可以證得,.記直線與兩切線和從左到右交點的橫坐標依次為,.【點睛】本題考查了函數與導數綜合,考查了學生數形結合,綜合分析,轉化劃歸,邏輯推理,數學運算的能力,屬于較難題.21、(1);(2).【解析】
(1)由已知短軸長求出,離心率求出關系,結合,即可求解;(2)當直線的斜率都存在時,不妨設直線的方程為,直線與橢圓方程聯立,利用相交弦長公式求出,斜率為,求出,得到關于的表達式,根據表達式的特點用“”判別式法求出范圍,當有一斜率不存在時,另一條斜率為,根據弦長公式,求出,即可求出結論.【詳解】(1)由得,又由得,則,故橢圓的方程為.(2)由(1)知,①當直線的斜率都存在時,由對稱性不妨設直線的方程為,由,,設,則,則,由橢圓對稱性可設直線的斜率為,則,.令,則,當時,,當時,由得,所以,即,且.②當直線的斜率其中一條不存在時,根據對稱性不妨設設直線的方程為,斜率不存在,則,,此時.若設的方程為,斜率不存在,則,綜上可知的取值范圍是.【點睛】本題考查橢圓標準方程、直線與橢圓的位置關系,注意根與系數關系、弦長公式、函數最值、橢圓性質的合理應用,意在考查邏輯推理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 電信行業財務分析與應用試題考核試卷
- 纖維板生產中的熱壓工藝參數對性能影響研究考核試卷
- 油墨及類似產品消費趨勢分析考核試卷
- 食管癌護理查房 2
- 山東省2024屆高三數學下學期6月考前適應性測試
- 福建省廈門市第一中學2024?2025學年高一下學期3月適應性訓練 數學試題(含解析)
- 綿陽飛行職業學院《反應工程概論》2023-2024學年第二學期期末試卷
- 山東濰坊高新技術產業開發區實驗學校2025屆五下數學期末學業質量監測模擬試題含答案
- 沈陽城市學院《事故調查與模擬分析技術》2023-2024學年第二學期期末試卷
- 泉州信息工程學院《魏晉玄學》2023-2024學年第一學期期末試卷
- 圓鋼管受壓承載力計算
- 黑布林英語閱讀初一⑤《杰克的悠長夏天》譯文-
- 勾股定理 楊靜
- 低壓配電柜GGD技術規范
- 某高速公路監理管理及工程質量監理要點
- GB/T 9061-2006金屬切削機床通用技術條件
- GB/T 3682-2000熱塑性塑料熔體質量流動速率和熔體體積流動速率的測定
- GB/T 1931-2009木材含水率測定方法
- 醫院患者壓力性損傷情況登記表
- GB 29206-2012食品安全國家標準食品添加劑硫酸銨
- 保障憲法實施 加強憲法監督 課件
評論
0/150
提交評論