廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)_第1頁
廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)_第2頁
廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)_第3頁
廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)_第4頁
廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

廣東省佛山市石門中學(xué)2024年學(xué)業(yè)水平考試數(shù)學(xué)試題模擬卷(六)請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,則的虛部是A.3 B. C. D.2.已知函數(shù),則不等式的解集為()A. B. C. D.3.已知復(fù)數(shù)(為虛數(shù)單位,),則在復(fù)平面內(nèi)對應(yīng)的點所在的象限為()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.函數(shù)在的圖象大致為A. B.C. D.5.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積為()A. B. C. D.6.費馬素數(shù)是法國大數(shù)學(xué)家費馬命名的,形如的素數(shù)(如:)為費馬索數(shù),在不超過30的正偶數(shù)中隨機選取一數(shù),則它能表示為兩個不同費馬素數(shù)的和的概率是()A. B. C. D.7.已知分別為雙曲線的左、右焦點,過的直線與雙曲線的左、右兩支分別交于兩點,若,則雙曲線的離心率為()A. B.4 C.2 D.8.國家統(tǒng)計局服務(wù)業(yè)調(diào)查中心和中國物流與采購聯(lián)合會發(fā)布的2018年10月份至2019年9月份共12個月的中國制造業(yè)采購經(jīng)理指數(shù)(PMI)如下圖所示.則下列結(jié)論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數(shù)為49.4%D.12個月的PMI值的中位數(shù)為50.3%9.若復(fù)數(shù)滿足(是虛數(shù)單位),則的虛部為()A. B. C. D.10.在中,,則=()A. B.C. D.11.若實數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.12.函數(shù)的圖象大致為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知均為非負實數(shù),且,則的取值范圍為______.14.若關(guān)于的不等式在時恒成立,則實數(shù)的取值范圍是_____15.實數(shù),滿足約束條件,則的最大值為__________.16.已知無蓋的圓柱形桶的容積是立方米,用來做桶底和側(cè)面的材料每平方米的價格分別為30元和20元,那么圓桶造價最低為________元.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在三棱柱中,平面平面,側(cè)面為平行四邊形,側(cè)面為正方形,,,為的中點.(1)求證:平面;(2)求二面角的大小.18.(12分)如圖所示,在四棱錐中,底面是邊長為2的正方形,側(cè)面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)(文科)求三棱錐的體積;(理科)求二面角的正切值.19.(12分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.87920.(12分)在極坐標系中,已知曲線C的方程為(),直線l的方程為.設(shè)直線l與曲線C相交于A,B兩點,且,求r的值.21.(12分)已知分別是橢圓的左焦點和右焦點,橢圓的離心率為是橢圓上兩點,點滿足.(1)求的方程;(2)若點在圓上,點為坐標原點,求的取值范圍.22.(10分)設(shè)橢圓:的左、右焦點分別為,,下頂點為,橢圓的離心率是,的面積是.(1)求橢圓的標準方程.(2)直線與橢圓交于,兩點(異于點),若直線與直線的斜率之和為1,證明:直線恒過定點,并求出該定點的坐標.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

因為,所以的虛部是.故選B.2、D【解析】

先判斷函數(shù)的奇偶性和單調(diào)性,得到,且,解不等式得解.【詳解】由題得函數(shù)的定義域為.因為,所以為上的偶函數(shù),因為函數(shù)都是在上單調(diào)遞減.所以函數(shù)在上單調(diào)遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數(shù)的奇偶性和單調(diào)性的判斷,考查函數(shù)的奇偶性和單調(diào)性的應(yīng)用,意在考查學(xué)生對這些知識的理解掌握水平.3、B【解析】

分別比較復(fù)數(shù)的實部、虛部與0的大小關(guān)系,可判斷出在復(fù)平面內(nèi)對應(yīng)的點所在的象限.【詳解】因為時,所以,,所以復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點位于第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查學(xué)生的計算求解能力,屬于基礎(chǔ)題.4、A【解析】

因為,所以排除C、D.當(dāng)從負方向趨近于0時,,可得.故選A.5、C【解析】

由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,利用正弦定理求出底面三角形外接圓的半徑,根據(jù)三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,求出球的半徑,即可求解球的表面積.【詳解】由三視圖可知,幾何體是一個三棱柱,三棱柱的底面是底邊為,高為的等腰三角形,側(cè)棱長為,如圖:由底面邊長可知,底面三角形的頂角為,由正弦定理可得,解得,三棱柱的兩底面中心連線的中點就是三棱柱的外接球的球心,所以,該幾何體外接球的表面積為:.故選:C【點睛】本題考查了多面體的內(nèi)切球與外接球問題,由三視圖求幾何體的表面積,考查了學(xué)生的空間想象能力,屬于基礎(chǔ)題.6、B【解析】

基本事件總數(shù),能表示為兩個不同費馬素數(shù)的和只有,,,共有個,根據(jù)古典概型求出概率.【詳解】在不超過的正偶數(shù)中隨機選取一數(shù),基本事件總數(shù)能表示為兩個不同費馬素數(shù)的和的只有,,,共有個則它能表示為兩個不同費馬素數(shù)的和的概率是本題正確選項:【點睛】本題考查概率的求法,考查列舉法解決古典概型問題,是基礎(chǔ)題.7、A【解析】

由已知得,,由已知比值得,再利用雙曲線的定義可用表示出,,用勾股定理得出的等式,從而得離心率.【詳解】.又,可令,則.設(shè),得,即,解得,∴,,由得,,,該雙曲線的離心率.故選:A.【點睛】本題考查求雙曲線的離心率,解題關(guān)鍵是由向量數(shù)量積為0得出垂直關(guān)系,利用雙曲線的定義把雙曲線上的點到焦點的距離都用表示出來,從而再由勾股定理建立的關(guān)系.8、D【解析】

根據(jù)圖形中的信息,可得頻率、平均值的估計、眾數(shù)、中位數(shù),從而得到答案.【詳解】對A,從圖中數(shù)據(jù)變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數(shù)為49.4%,故C正確,;對D,12個月的PMI值的中位數(shù)為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數(shù)、中位數(shù)計算,考查數(shù)據(jù)處理能力,屬于基礎(chǔ)題.9、A【解析】

由得,然后分子分母同時乘以分母的共軛復(fù)數(shù)可得復(fù)數(shù),從而可得的虛部.【詳解】因為,所以,所以復(fù)數(shù)的虛部為.故選A.【點睛】本題考查了復(fù)數(shù)的除法運算和復(fù)數(shù)的概念,屬于基礎(chǔ)題.復(fù)數(shù)除法運算的方法是分子分母同時乘以分母的共軛復(fù)數(shù),轉(zhuǎn)化為乘法運算.10、B【解析】

在上分別取點,使得,可知為平行四邊形,從而可得到,即可得到答案.【詳解】如下圖,,在上分別取點,使得,則為平行四邊形,故,故答案為B.【點睛】本題考查了平面向量的線性運算,考查了學(xué)生邏輯推理能力,屬于基礎(chǔ)題.11、B【解析】

根據(jù)所給不等式組,畫出不等式表示的可行域,將目標函數(shù)化為直線方程,平移后即可確定取值范圍.【詳解】實數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標函數(shù)的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標函數(shù)取值范圍的求法,屬于基礎(chǔ)題.12、A【解析】

用偶函數(shù)的圖象關(guān)于軸對稱排除,用排除,用排除.故只能選.【詳解】因為,所以函數(shù)為偶函數(shù),圖象關(guān)于軸對稱,故可以排除;因為,故排除,因為由圖象知,排除.故選:A【點睛】本題考查了根據(jù)函數(shù)的性質(zhì),辨析函數(shù)的圖像,排除法,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

設(shè),可得的取值范圍,分別利用基本不等式和,把用代換,結(jié)合的取值范圍求關(guān)于的二次函數(shù)的最值即可求解.【詳解】因為,,令,則,因為,當(dāng)且僅當(dāng)時等號成立,所以,,即,令則函數(shù)的對稱軸為,所以當(dāng)時函數(shù)有最大值為,即.當(dāng)且,即,或,時取等號;因為,當(dāng)且僅當(dāng)時等號成立,所以,令,則函數(shù)的對稱軸為,所以當(dāng)時,函數(shù)有最小值為,即,當(dāng),且時取等號,所以.故答案為:【點睛】本題考查基本不等式與二次函數(shù)求最值相結(jié)合求代數(shù)式的取值范圍;考查運算求解能力和知識的綜合運用能力;基本不等式:和的靈活運用是求解本題的關(guān)鍵;屬于綜合型、難度大型試題.14、【解析】

利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進而求得的取值范圍。【詳解】由得,兩邊同除以,得到,,,設(shè),,由函數(shù)在上遞減,所以,故實數(shù)的取值范圍是。【點睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。15、10【解析】

畫出可行域,根據(jù)目標函數(shù)截距可求.【詳解】解:作出可行域如下:由得,平移直線,當(dāng)經(jīng)過點時,截距最小,最大解得的最大值為10故答案為:10【點睛】考查可行域的畫法及目標函數(shù)最大值的求法,基礎(chǔ)題.16、【解析】

設(shè)桶的底面半徑為,用表示出桶的總造價,利用基本不等式得出最小值.【詳解】設(shè)桶的底面半徑為,高為,則,故,圓通的造價為解法一:當(dāng)且僅當(dāng),即時取等號.解法二:,則,令,即,解得,此函數(shù)在單調(diào)遞增;令,即,解得,此函數(shù)在上單調(diào)遞減;令,即,解得,即當(dāng)時,圓桶的造價最低.所以故答案為:【點睛】本題考查了基本不等式的應(yīng)用,注意驗證等號成立的條件,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】

(1)連接,交與,連接,由,得出結(jié)論;(2)以為原點,,,分別為,,軸建立空間直角坐標系,求出平面的法向量,利用夾角公式求出即可.【詳解】(1)連接,交與,連接,在中,,又平面,平面,所以平面;(2)由平面平面,,為平面與平面的交線,故平面,故,又,所以平面,以為原點,,,分別為,,軸建立空間直角坐標系,,,,,,,設(shè)平面的法向量為,,,由,得,平面的法向量為,由,故二面角的大小為.【點睛】本小題主要考查線面平行的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18、(1)見解析(2)(文)(理)【解析】

(1)證明:取PD中點G,連結(jié)GF、AG,∵GF為△PDC的中位線,∴GF∥CD且,又AE∥CD且,∴GF∥AE且GF=AE,∴EFGA是平行四邊形,則EF∥AG,又EF不在平面PAD內(nèi),AG在平面PAD內(nèi),∴EF∥面PAD;(2)(文)解:取AD中點O,連結(jié)PO,∵面PAD⊥面ABCD,△PAD為正三角形,∴PO⊥面ABCD,且,又PC為面ABCD斜線,F(xiàn)為PC中點,∴F到面ABCD距離,故;(理)連OB交CE于M,可得Rt△EBC≌Rt△OAB,∴∠MEB=∠AOB,則∠MEB+∠MBE=90°,即OM⊥EC.連PM,又由(2)知PO⊥EC,可得EC⊥平面POM,則PM⊥EC,即∠PMO是二面角P-EC-D的平面角,在Rt△EBC中,,∴,∴,即二面角P-EC-D的正切值為.【方法點晴】本題主要考查線面平行的判定定理、二面角的求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關(guān)鍵是設(shè)法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構(gòu)造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面.本題(1)是就是利用方法①證明的.19、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】

(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.【詳解】(1)因為樣本數(shù)據(jù)中有流動人員210人,非流動人員90人,所以辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表如下:辦理社保手續(xù)所需時間與是否流動人員列聯(lián)表流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天453075辦理社保手續(xù)所需時間超過4天16560225總計21090300結(jié)合列聯(lián)表可算得.有95%的把握認為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).(2)根據(jù)分層抽樣可知時間在可選9人,時間在可以選3名,故,則,,,,可知分布列為0123可知.【點睛】本題考查獨立性檢驗中的計算,以及離散型隨機變量的分布列以及數(shù)學(xué)期望,涉及分層抽樣,屬綜合性中檔題.20、【解析】

先將曲線C和直線l的極坐標方程化為直角坐標方程,可得圓心到直線的距離,再由勾股定理,計算即得.【詳解】以極點為坐標原點,極軸為x軸的正半軸建立平面直角坐標系,可得曲線C:()的直角坐標方程為,表示以原點為圓心,半徑為r的圓.由直線l的方程,化簡得,則直線l的直角坐標方程方程為.記圓心到直線l的距離為d,則,又,即,所以.【點睛】本題考查曲線和直線的極坐標方程化為直角坐標方程,是基礎(chǔ)題.21、(1);(2).【解析】

(1)根據(jù)焦點坐標和離心率,結(jié)合橢圓中的關(guān)系,即可求得的值,進而得橢圓的標準方程.(2)設(shè)出直線的方程為,由題意可知為中點.聯(lián)立直線與橢圓方程,由韋達定理表示出,由判別式可得;由平面向量的線性運

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論