人教A版(新教材)高中數學選擇性必修第一冊學案:1 1 1 第1課時 空間向量及其線性運算_第1頁
人教A版(新教材)高中數學選擇性必修第一冊學案:1 1 1 第1課時 空間向量及其線性運算_第2頁
人教A版(新教材)高中數學選擇性必修第一冊學案:1 1 1 第1課時 空間向量及其線性運算_第3頁
人教A版(新教材)高中數學選擇性必修第一冊學案:1 1 1 第1課時 空間向量及其線性運算_第4頁
人教A版(新教材)高中數學選擇性必修第一冊學案:1 1 1 第1課時 空間向量及其線性運算_第5頁
已閱讀5頁,還剩2頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

人教A版(新教材)高中數學選擇性必修第一冊PAGEPAGE1§1.1空間向量及其運算1.1.1空間向量及其線性運算第1課時空間向量及其線性運算學習目標1.理解空間向量的有關概念.2.類比平面向量,會用平行四邊形法則、三角形法則作出向量的和與差.3.理解向量運算的交換律、結合律和分配律.知識點一空間向量的概念1.定義:在空間,具有大小和方向的量叫做空間向量.2.長度或模:向量的大小.3.表示方法:①幾何表示法:空間向量用有向線段表示;②字母表示法:用字母a,b,c,…表示;若向量a的起點是A,終點是B,也可記作eq\o(AB,\s\up6(→)),其模記為|a|或|eq\o(AB,\s\up6(→))|.4.幾類特殊的空間向量名稱定義及表示零向量長度為0的向量叫做零向量,記為0單位向量模為1的向量稱為單位向量相反向量與向量a長度相等而方向相反的向量,稱為a的相反向量,記為-a共線向量(平行向量)如果表示若干空間向量的有向線段所在的直線互相平行或重合,那么這些向量叫做共線向量或平行向量.規定:對于任意向量a,都有0∥a相等向量方向相同且模相等的向量稱為相等向量思考空間中的兩個向量是不是共面向量?〖答案〗是,空間中的任意兩個向量都可以平移到同一個平面內,成為同一平面內的兩個向量.知識點二空間向量的線性運算空間向量的線性運算加法a+b=eq\o(OA,\s\up6(→))+eq\o(AB,\s\up6(→))=eq\o(OB,\s\up6(→))減法a-b=eq\o(OA,\s\up6(→))-eq\o(OC,\s\up6(→))=eq\o(CA,\s\up6(→))數乘當λ>0時,λa=λeq\o(OA,\s\up6(→))=eq\o(PQ,\s\up6(→));當λ<0時,λa=λeq\o(OA,\s\up6(→))=eq\o(MN,\s\up6(→));當λ=0時,λa=0運算律交換律:a+b=b+a;結合律:a+(b+c)=(a+b)+c,λ(μa)=(λμ)a;分配律:(λ+μ)a=λa+μa,λ(a+b)=λa+λb.思考1怎樣作圖表示三個向量的和,作出的和向量是否與相加的順序有關?〖答案〗可以利用三角形法則和平行四邊形法則作出三個向量的和.加法運算是對有限個向量求和,交換相加向量的順序,其和不變.思考2由數乘λa=0,可否得出λ=0?〖答案〗不能.λa=0?λ=0或a=0.1.兩個有公共終點的向量,一定是共線向量.(×)2.在空間中,任意一個向量都可以進行平移.(√)3.空間兩非零向量相加時,一定可以用平行四邊形法則運算.(×)4.向量eq\o(AB,\s\up6(→))與eq\o(AC,\s\up6(→))是共線向量,則A,B,C三點必在一條直線上.(√)一、向量概念的應用例1(1)下列關于空間向量的說法中正確的是()A.方向相反的兩個向量是相反向量B.空間中任意兩個單位向量必相等C.若向量eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))滿足|eq\o(AB,\s\up6(→))|>|eq\o(CD,\s\up6(→))|,則eq\o(AB,\s\up6(→))>eq\o(CD,\s\up6(→))D.相等向量其方向必相同〖答案〗D〖解析〗A中,方向相反,長度相等的兩個向量是相反向量;B中,單位向量模都相等而方向不確定;C中,向量作為矢量不能比較大小,故選D.(2)(多選)下列說法中正確的是()A.若|a|=|b|,則a,b的長度相同,方向相同或相反B.若向量a是向量b的相反向量,則|a|=|b|C.空間向量的加法滿足結合律D.任一向量與它的相反向量不相等〖答案〗BC〖解析〗|a|=|b|,說明a與b模相等,但方向不確定;對于a的相反向量b=-a,故|a|=|b|,從而B正確;空間向量的加法滿足結合律,C正確;零向量的相反向量仍是零向量.故選BC.反思感悟空間向量的概念問題在空間中,向量、向量的模、相等向量的概念和平面中向量的相關概念完全一致,兩向量相等的充要條件是兩個向量的方向相同、模相等.兩向量互為相反向量的充要條件是大小相等,方向相反.跟蹤訓練1下列關于空間向量的命題中,正確的命題的序號是________.①長度相等、方向相同的兩個向量是相等向量;②平行且模相等的兩個向量是相等向量;③若a≠b,則|a|≠|b|;④兩個向量相等,則它們的起點與終點相同.〖答案〗①〖解析〗根據向量的定義,知長度相等、方向相同的兩個向量是相等向量,①正確;平行且模相等的兩個向量可能是相等向量,也可能是相反向量,②不正確;當a=-b時,也有|a|=|b|,③不正確;只要模相等、方向相同,兩個向量就是相等向量,與向量的起點和終點無關,④不正確.綜上可知只有①正確.二、空間向量的加減運算例2如圖,已知長方體ABCD-A′B′C′D′,化簡下列向量表達式,并在圖中標出化簡結果的向量.(1)eq\o(AA′,\s\up6(→))-eq\o(CB,\s\up6(→));(2)eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(B′C′,\s\up6(→)).解(1)eq\o(AA′,\s\up6(→))-eq\o(CB,\s\up6(→))=eq\o(AA′,\s\up6(→))-eq\o(DA,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\o(AD,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\o(A′D′,\s\up6(→))=eq\o(AD′,\s\up6(→)).(2)eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→))+eq\o(B′C′,\s\up6(→))=(eq\o(AA′,\s\up6(→))+eq\o(AB,\s\up6(→)))+eq\o(B′C′,\s\up6(→))=eq\o(AA′,\s\up6(→))+eq\o(A′B′,\s\up6(→))+eq\o(B′C′,\s\up6(→))=eq\o(AB′,\s\up6(→))+eq\o(B′C′,\s\up6(→))=eq\o(AC′,\s\up6(→)).向量eq\o(AD′,\s\up6(→)),eq\o(AC′,\s\up6(→))如圖所示.延伸探究試把本例中的體對角線所對應向量eq\o(AC′,\s\up6(→))用向量eq\o(AA′,\s\up6(→)),eq\o(AB,\s\up6(→)),eq\o(AD,\s\up6(→))表示.解在平行四邊形ACC′A′中,由平行四邊形法則可得eq\o(AC′,\s\up6(→))=eq\o(AC,\s\up6(→))+eq\o(AA′,\s\up6(→)),在平行四邊形ABCD中,由平行四邊形法則可得eq\o(AC,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→)).故eq\o(AC′,\s\up6(→))=eq\o(AB,\s\up6(→))+eq\o(AD,\s\up6(→))+eq\o(AA′,\s\up6(→)).反思感悟空間向量加法、減法運算的兩個技巧(1)巧用相反向量:向量的三角形法則是解決空間向量加法、減法的關鍵,靈活運用相反向量可使向量首尾相接.(2)巧用平移:利用三角形法則和平行四邊形法則進行向量加、減法運算時,務必注意和向量、差向量的方向,必要時可采用空間向量的自由平移獲得運算結果.跟蹤訓練2(多選)如圖,在正方體ABCD-A1B1C1D1中,下列各式運算結果為eq\o(BD1,\s\up6(→))的是()A.eq\o(A1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))-eq\o(AB,\s\up6(→))B.eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→))-eq\o(D1C1,\s\up6(→))C.eq\o(AD,\s\up6(→))-eq\o(AB,\s\up6(→))-eq\o(DD1,\s\up6(→))D.eq\o(B1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))+eq\o(DD1,\s\up6(→))〖答案〗AB〖解析〗A中,eq\o(A1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(AD1,\s\up6(→))-eq\o(AB,\s\up6(→))=eq\o(BD1,\s\up6(→));B中,eq\o(BC,\s\up6(→))+eq\o(BB1,\s\up6(→))-eq\o(D1C1,\s\up6(→))=eq\o(BC1,\s\up6(→))+eq\o(C1D1,\s\up6(→))=eq\o(BD1,\s\up6(→));C中,eq\o(AD,\s\up6(→))-eq\o(AB,\s\up6(→))-eq\o(DD1,\s\up6(→))=eq\o(BD,\s\up6(→))-eq\o(DD1,\s\up6(→))=eq\o(BD,\s\up6(→))-eq\o(BB1,\s\up6(→))=eq\o(B1D,\s\up6(→))≠eq\o(BD1,\s\up6(→));D中,eq\o(B1D1,\s\up6(→))-eq\o(A1A,\s\up6(→))+eq\o(DD1,\s\up6(→))=eq\o(BD,\s\up6(→))+eq\o(AA1,\s\up6(→))+eq\o(DD1,\s\up6(→))=eq\o(BD1,\s\up6(→))+eq\o(AA1,\s\up6(→))≠eq\o(BD1,\s\up6(→)).故選AB.三、空間向量的線性運算例3在空間四邊形ABCD中,G為△BCD的重心,E,F,H分別為邊CD,AD和BC的中點,化簡下列各表達式.(1)eq\o(AG,\s\up6(→))+eq\f(1,3)eq\o(BE,\s\up6(→))+eq\f(1,2)eq\o(CA,\s\up6(→));(2)eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))-eq\o(AD,\s\up6(→))).解(1)因為G是△BCD的重心,所以|eq\o(GE,\s\up6(→))|=eq\f(1,3)|eq\o(BE,\s\up6(→))|,所以eq\f(1,3)eq\o(BE,\s\up6(→))=eq\o(GE,\s\up6(→)),又因為eq\f(1,2)eq\o(CA,\s\up6(→))=eq\o(EF,\s\up6(→)),所以由向量的加法法則,可知eq\o(AG,\s\up6(→))+eq\f(1,3)eq\o(BE,\s\up6(→))+eq\f(1,2)eq\o(CA,\s\up6(→))=eq\o(AG,\s\up6(→))+eq\o(GE,\s\up6(→))+eq\o(EF,\s\up6(→))=eq\o(AE,\s\up6(→))+eq\o(EF,\s\up6(→))=eq\o(AF,\s\up6(→)).從而eq\o(AG,\s\up6(→))+eq\f(1,3)eq\o(BE,\s\up6(→))+eq\f(1,2)eq\o(CA,\s\up6(→))=eq\o(AF,\s\up6(→)).(2)如圖所示,分別取AB,AC的中點P,Q,連接PH,QH,則四邊形APHQ為平行四邊形,且有eq\f(1,2)eq\o(AB,\s\up6(→))=eq\o(AP,\s\up6(→)),eq\f(1,2)eq\o(AC,\s\up6(→))=eq\o(AQ,\s\up6(→)),而eq\o(AP,\s\up6(→))+eq\o(AQ,\s\up6(→))=eq\o(AH,\s\up6(→)),eq\f(1,2)eq\o(AD,\s\up6(→))=eq\o(AF,\s\up6(→)),所以eq\f(1,2)(eq\o(AB,\s\up6(→))+eq\o(AC,\s\up6(→))-eq\o(AD,\s\up6(→)))=eq\o(AP,\s\up6(→))+eq\o(AQ,\s\up6(→))-eq\o(AF,\s\up6(→))=eq\o(AH,\s\up6(→))-eq\o(AF,\s\up6(→))=eq\o(FH,\s\up6(→)).反思感悟利用數乘運算進行向量表示的注意點(1)數形結合:利用數乘運算解題時,要結合具體圖形,利用三角形法則、平行四邊形法則,將目標向量轉化為已知向量.(2)明確目標:在化簡過程中要有目標意識,巧妙利用線段的中點進行解題.跟蹤訓練3在平行六面體ABCD-A1B1C1D1中,M為AC與BD的交點.若eq\o(A1B1,\s\up6(→))=a,eq\o(A1D1,\s\up6(→))=b,eq\o(A1A,\s\up6(→))=c,則下列向量中與eq\o(B1M,\s\up6(→))相等的向量是()A.-eq\f(1,2)a+eq\f(1,2)b+cB.eq\f(1,2)a+eq\f(1,2)b+cC.eq\f(1,2)a-eq\f(1,2)b+cD.-eq\f(1,2)a-eq\f(1,2)b+c〖答案〗A〖解析〗eq\o(B1M,\s\up6(→))=eq\o(B1B,\s\up6(→))+eq\o(BM,\s\up6(→))=eq\o(A1A,\s\up6(→))+eq\f(1,2)(eq\o(BA,\s\up6(→))+eq\o(BC,\s\up6(→)))=c+eq\f(1,2)(-a+b)=-eq\f(1,2)a+eq\f(1,2)b+c.1.“兩個非零空間向量的模相等”是“兩個空間向量相等”的()A.充分不必要條件B.必要不充分條件C.充要條件D.既不充分又不必要條件〖答案〗B2.向量a,b互為相反向量,已知|b|=3,則下列結論正確的是()A.a=b B.a+b為實數0C.a與b方向相同 D.|a|=3〖答案〗D〖解析〗向量a,b互為相反向量,則a,b模相等,方向相反,故選D.3.設A,B,C是空間任意三點,下列結論錯誤的是()A.eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(→))=eq\o(AC,\s\up6(→)) B.eq\o(AB,\s\up6(→))+eq\o(BC,\s\up6(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論