




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
遼寧省錦州市重點中學2024年中考三模數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.對于有理數x、y定義一種運算“Δ”:xΔy=ax+by+c,其中a、b、c為常數,等式右邊是通常的加法與乘法運算,已知3Δ5=15,4Δ7=28,則1Δ1的值為()A.-1 B.-11 C.1 D.112.如圖,一把帶有60°角的三角尺放在兩條平行線間,已知量得平行線間的距離為12cm,三角尺最短邊和平行線成45°角,則三角尺斜邊的長度為()A.12cm B.12cm C.24cm D.24cm3.的絕對值是()A.8 B.﹣8 C. D.﹣4.下面的圖形是軸對稱圖形,又是中心對稱圖形的有()A.1個 B.2個 C.3個 D.4個5.如圖,已知四邊形ABCD,R,P分別是DC,BC上的點,E,F分別是AP,RP的中點,當點P在BC上從點B向點C移動而點R不動時,那么下列結論成立的是().A.線段EF的長逐漸增大 B.線段EF的長逐漸減少C.線段EF的長不變 D.線段EF的長不能確定6.下列計算正確的是()A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9C.(a-b)2=a2-b2 D.(a+b)2=a2+a27.如圖,△ABC中,D為BC的中點,以D為圓心,BD長為半徑畫一弧交AC于E點,若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.8.下列美麗的壯錦圖案是中心對稱圖形的是()A. B. C. D.9.在平面直角坐標系xOy中,二次函數y=ax2+bx+c(a≠0)的大致圖象如圖所示,則下列結論正確的是()A.a<0,b<0,c>0B.﹣=1C.a+b+c<0D.關于x的方程ax2+bx+c=﹣1有兩個不相等的實數根10.我國平均每平方千米的土地一年從太陽得到的能量,相當于燃燒130000000kg的煤所產生的能量.把130000000kg用科學記數法可表示為()A.13×kg B.0.13×kg C.1.3×kg D.1.3×kg11.要使分式有意義,則x的取值范圍是()A.x= B.x> C.x< D.x≠12.據中國電子商務研究中心發布年度中國共享經濟發展報告顯示,截止2017年12月,共有190家共享經濟平臺獲得億元投資,數據億元用科學記數法可表示為A.元 B.元 C.元 D.元二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,BD是矩形ABCD的一條對角線,點E,F分別是BD,DC的中點.若AB=4,BC=3,則AE+EF的長為_____.14.求1+2+22+23+…+22007的值,可令s=1+2+22+23+…+22007,則2s=2+22+23+24+…+22018,因此2s﹣s=22018﹣1,即s=22018﹣1,仿照以上推理,計算出1+3+32+33+…+32018的值為_____.15.分解因:=______________________.16.一元二次方程2x2﹣3x﹣4=0根的判別式的值等于_____.17.如圖,在平面直角坐標系xOy中,A(-2,0),B(0,2),⊙O的半徑為1,點C為⊙O上一動點,過點B作BP⊥直線AC,垂足為點P,則P點縱坐標的最大值為cm.18.因式分解:_______________________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:,其中x=-1.20.(6分)元旦放假期間,小明和小華準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,他們各自在這四個景點中任選一個,每個景點被選中的可能性相同.(1)求小明選擇去白鹿原游玩的概率;(2)用樹狀圖或列表的方法求小明和小華都選擇去秦嶺國家植物園游玩的概率.21.(6分)列方程解應用題八年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.22.(8分)今年5月,某大型商業集團隨機抽取所屬的m家商業連鎖店進行評估,將各連鎖店按照評估成績分成了A、B、C、D四個等級,繪制了如圖尚不完整的統計圖表.評估成績n(分)
評定等級
頻數
90≤n≤100
A
2
80≤n<90
B
70≤n<80
C
15
n<70
D
6
根據以上信息解答下列問題:(1)求m的值;(2)在扇形統計圖中,求B等級所在扇形的圓心角的大小;(結果用度、分、秒表示)(3)從評估成績不少于80分的連鎖店中任選2家介紹營銷經驗,求其中至少有一家是A等級的概率.23.(8分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標;(2)連接BD,F為拋物線上一動點,當∠FAB=∠EDB時,求點F的坐標;(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當點P在x軸上,且PQ=MN時,求菱形對角線MN的長.24.(10分)如圖1,三個正方形ABCD、AEMN、CEFG,其中頂點D、C、G在同一條直線上,點E是BC邊上的動點,連結AC、AM.(1)求證:△ACM∽△ABE.(2)如圖2,連結BD、DM、MF、BF,求證:四邊形BFMD是平行四邊形.(3)若正方形ABCD的面積為36,正方形CEFG的面積為4,求五邊形ABFMN的面積.25.(10分)如圖,以△ABC的一邊AB為直徑作⊙O,⊙O與BC邊的交點D恰好為BC的中點,過點D作⊙O的切線交AC邊于點E.(1)求證:DE⊥AC;(2)連結OC交DE于點F,若,求的值.26.(12分)如圖,一次函數的圖象與反比例函數(為常數,且)的圖象交于A(1,a)、B兩點.求反比例函數的表達式及點B的坐標;在x軸上找一點P,使PA+PB的值最小,求滿足條件的點P的坐標及△PAB的面積.27.(12分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
先由運算的定義,寫出3△5=25,4△7=28,得到關于a、b、c的方程組,用含c的代數式表示出a、b.代入2△2求出值.【詳解】由規定的運算,3△5=3a+5b+c=25,4a+7b+c=28所以3a+5b+c=解這個方程組,得a所以2△2=a+b+c=-35-2c+24+c+c=-2.故選B.【點睛】本題考查了新運算、三元一次方程組的解法.解決本題的關鍵是根據新運算的意義,正確的寫出3△5=25,4△7=28,2△2.2、D【解析】
過A作AD⊥BF于D,根據45°角的三角函數值可求出AB的長度,根據含30°角的直角三角形的性質求出斜邊AC的長即可.【詳解】如圖,過A作AD⊥BF于D,∵∠ABD=45°,AD=12,∴=12,又∵Rt△ABC中,∠C=30°,∴AC=2AB=24,故選:D.【點睛】本題考查解直角三角形,在直角三角形中,30°角所對的直角邊等于斜邊的一半,熟記特殊角三角函數值是解題關鍵.3、C【解析】
根據絕對值的計算法則解答.如果用字母a表示有理數,則數a絕對值要由字母a本身的取值來確定:①當a是正有理數時,a的絕對值是它本身a;②當a是負有理數時,a的絕對值是它的相反數﹣a;③當a是零時,a的絕對值是零.【詳解】解:.故選【點睛】此題重點考查學生對絕對值的理解,熟練掌握絕對值的計算方法是解題的關鍵.4、B【解析】
根據軸對稱圖形和中心對稱圖形的定義對各個圖形進行逐一分析即可.【詳解】解:第一個圖形是軸對稱圖形,但不是中心對稱圖形;第二個圖形是中心對稱圖形,但不是軸對稱圖形;第三個圖形既是軸對稱圖形,又是中心對稱圖形;第四個圖形即是軸對稱圖形,又是中心對稱圖形;∴既是軸對稱圖形,又是中心對稱圖形的有兩個,故選:B.【點睛】此題主要考查了中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180°后兩部分重合.5、C【解析】
因為R不動,所以AR不變.根據三角形中位線定理可得EF=AR,因此線段EF的長不變.【詳解】如圖,連接AR,∵E、F分別是AP、RP的中點,∴EF為△APR的中位線,∴EF=AR,為定值.∴線段EF的長不改變.故選:C.【點睛】本題考查了三角形的中位線定理,只要三角形的邊AR不變,則對應的中位線的長度就不變.6、B【解析】
利用完全平方公式及平方差公式計算即可.【詳解】解:A、原式=a2-6a+9,本選項錯誤;
B、原式=a2-9,本選項正確;
C、原式=a2-2ab+b2,本選項錯誤;
D、原式=a2+2ab+b2,本選項錯誤,
故選:B.【點睛】本題考查了平方差公式和完全平方公式,熟練掌握公式是解題的關鍵.7、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點睛:本題考查扇形的面積公式、三角形內角和定理等知識,解題的關鍵是記住扇形的面積公式:S=.8、A【解析】【分析】根據中心對稱圖形的定義逐項進行判斷即可得.【詳解】A、是中心對稱圖形,故此選項正確;B、不是中心對稱圖形,故此選項錯誤;C、不是中心對稱圖形,故此選項錯誤;D、不是中心對稱圖形,故此選項錯誤,故選A.【點睛】本題主要考查了中心對稱圖形,熟練掌握中心對稱圖形的定義是解題的關鍵;把一個圖形繞某一點旋轉180°,如果旋轉后的圖形能夠與原來的圖形重合,那么這個圖形就叫做中心對稱圖形.9、D【解析】試題分析:根據圖像可得:a<0,b>0,c<0,則A錯誤;,則B錯誤;當x=1時,y=0,即a+b+c=0,則C錯誤;當y=-1時有兩個交點,即有兩個不相等的實數根,則正確,故選D.10、D【解析】試題分析:科學計數法是指:a×,且,n為原數的整數位數減一.11、D【解析】
本題主要考查分式有意義的條件:分母不能為0,即3x?7≠0,解得x.【詳解】∵3x?7≠0,∴x≠.故選D.【點睛】本題考查的是分式有意義的條件:當分母不為0時,分式有意義.12、C【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】億=115956000000,所以億用科學記數法表示為1.15956×1011,故選C.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
先根據三角形中位線定理得到的長,再根據直角三角形斜邊上中線的性質,即可得到的長,進而得出計算結果.【詳解】解:∵點E,F分別是的中點,∴FE是△BCD的中位線,.又∵E是BD的中點,∴Rt△ABD中,,故答案為1.【點睛】本題主要考查了矩形的性質以及三角形中位線定理的運用,解題時注意:在直角三角形中,斜邊上的中線等于斜邊的一半;三角形的中位線平行于第三邊,并且等于第三邊的一半.14、【解析】
仿照已知方法求出所求即可.【詳解】令S=1+3+32+33+…+32018,則3S=3+32+33+…+32019,因此3S﹣S=32019﹣1,即S=.故答案為:.【點睛】本題考查了有理數的混合運算,熟練掌握運算法則是解答本題的關鍵.15、(x-2y)(x-2y+1)【解析】
根據所給代數式第一、二、五項一組,第三、四項一組,分組分解后再提公因式即可分解.【詳解】=x2-4xy+4y2-2y+x=(x-2y)2+x-2y=(x-2y)(x-2y+1)16、41【解析】
已知一元二次方程的根判別式為△=b2﹣4ac,代入計算即可求解.【詳解】依題意,一元二次方程2x2﹣3x﹣4=0,a=2,b=﹣3,c=﹣4∴根的判別式為:△=b2﹣4ac=(﹣3)2﹣4×2×(﹣4)=41故答案為:41【點睛】本題考查了一元二次方程的根的判別式,熟知一元二次方程ax2+bx+c=0(a≠0)的根的判別式為△=b2﹣4ac是解決問題的關鍵.17、【解析】
當AC與⊙O相切于點C時,P點縱坐標的最大值,如圖,直線AC交y軸于點D,連結OC,作CH⊥x軸于H,PM⊥x軸于M,DN⊥PM于N,∵AC為切線,∴OC⊥AC,在△AOC中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=OA=,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=BD=(2-)=1-,在Rt△DPN中,∵∠PDN=30°,∴PN=DP=-,而MN=OD=,∴PM=PN+MN=1-+=,即P點縱坐標的最大值為.【點睛】本題是圓的綜合題,先求出OD的長度,最后根據兩點之間線段最短求出PN+MN的值.18、【解析】
先提公因式,再用平方差公式分解.【詳解】解:【點睛】本題考查因式分解,掌握因式分解方法是關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、解:原式=,.【解析】
試題分析:先將括號里面的通分后,將除法轉換成乘法,約分化簡.然后代x的值,進行二次根式化簡.解:原式=.當x=-1時,原式.20、(1);(2)【解析】
(1)利用概率公式直接計算即可;
(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與小明和小華都選擇去同一個地方游玩的情況,再利用概率公式即可求得答案.【詳解】(1)∵小明準備到西安的大雁塔(記為A)、白鹿原(記為B)、興慶公園(記為C)、秦嶺國家植物園(記為D)中的一個景點去游玩,∴小明選擇去白鹿原游玩的概率=;(2)畫樹狀圖分析如下:兩人選擇的方案共有16種等可能的結果,其中選擇同種方案有1種,所以小明和小華都選擇去秦嶺國家植物園游玩的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法和樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.21、15【解析】試題分析:設騎車學生的速度為,利用時間關系列方程解應用題,一定要檢驗.試題解析:解:設騎車學生的速度為,由題意得,解得.經檢驗是原方程的解.答:騎車學生的速度為15.22、(1)25;(2)8°48′;(3)56【解析】試題分析:(1)由C等級頻數為15除以C等級所占的百分比60%,即可求得m的值;(2)首先求得B等級的頻數,繼而求得B等級所在扇形的圓心角的大小;(3)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與其中至少有一家是A等級的情況,再利用概率公式求解即可求得答案.試題解析:(1)∵C等級頻數為15,占60%,∴m=15÷60%=25;(2)∵B等級頻數為:25﹣2﹣15﹣6=2,∴B等級所在扇形的圓心角的大小為:225(3)評估成績不少于80分的連鎖店中,有兩家等級為A,有兩家等級為B,畫樹狀圖得:∵共有12種等可能的結果,其中至少有一家是A等級的有10種情況,∴其中至少有一家是A等級的概率為:1012=5考點:頻數(率)分布表;扇形統計圖;列表法與樹狀圖法.23、(1),點D的坐標為(2,-8)(2)點F的坐標為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數法,列方程求二次函數解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標.(3)分類討論,當MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標為(2,-8).(2)如圖,當點F在x軸上方時,設點F的坐標為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,FG=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當x=7時,y=,∴點F的坐標為(7,).當點F在x軸下方時,設同理求得點F的坐標為(5,).綜上所述,點F的坐標為(7,)或(5,).(3)∵點P在x軸上,∴根據菱形的對稱性可知點P的坐標為(2,0).如圖,當MN在x軸上方時,設T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當MN在x軸下方時,設TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數的解析式(1)已知二次函數過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數解析式.(2)已知二次函數與x軸的兩個交點(,利用雙根式,y=()求二次函數解析式,而且此時對稱軸方程過交點的中點,.2.處理直角坐標系下,二次函數與幾何圖形問題:第一步要寫出每個點的坐標(不能寫出來的,可以用字母表示),寫已知點坐標的過程中,經常要做坐標軸的垂線,第二步,利用特殊圖形的性質和函數的性質,往往是解決問題的鑰匙.24、(1)證明見解析;(2)證明見解析;(3)74.【解析】
(1)根據四邊形ABCD和四邊形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可證△ACM∽△ABE;(2)連結AC,由△ACM∽△ABE得∠ACM=∠B=90°,易證∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,從而可以證明四邊形BFMD是平行四邊形;(3)根據S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【詳解】(1)證明:∵四邊形ABCD和四邊形AEMN都是正方形,∴,∠CAB=∠MAC=45°,∴∠CAB-∠CAE=∠MAC-∠CAE,∴∠BAE=∠CAM,∴△ACM∽△ABE.(2)證明:連結AC因為△ACM∽△ABE,則∠ACM=∠B=90°,因為∠ACB=∠ECF=45°,所以∠ACM+∠ACB+∠ECF=180°,所以點M,C,F在同一直線上,所以∠MCD=∠BDC=45°,所以BD平行MF,又因為MC=BE,FC=CE,所以MF=BC=BD,所以四邊形BFMD是平行四邊形(3)S五邊形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+26=74.【點睛】本題主要考查了正方形的性質的應用,解此題的關鍵是能正確作出輔助線,綜合性比較強,有一定的難度.25、(1)證明見解析(2)【解析】
(1)連接OD,根據三角形的中位線定理可求出OD∥AC,根據切線的性質可證明DE⊥OD,進而得證.(2)連接AD,根據等腰三角形的性質及三角函數的定義用OB表示出OF、CF的長,根據三角函數的定義求解.【詳解】解:(1)連接OD.∵DE是⊙O的切線,∴DE⊥OD,即∠ODE=90°.∵AB是⊙O的直徑,∴O是AB的中點.又∵D是BC的中點,.∴OD∥AC.∴∠DEC=∠ODE=90°.∴DE⊥AC.(2)連接AD.∵OD∥AC,∴.∵AB為⊙O的直徑,∴∠ADB=∠ADC=90°.又∵D為BC的中點,∴AB=AC.∵sin∠AB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上海公租房買房合同協議
- 建筑材料股東合同協議
- 合同解除協議書格式
- 店鋪經營合伙合同協議
- 三方協議算合同
- 上班路上受傷合同協議
- 廢氣環保工程合同協議
- 店面樓梯租用協議合同書
- 廢棄窯廠出租合同協議
- 合同管理系統技術協議
- 2025年許昌職業技術學院單招職業適應性考試題庫及答案1套
- 環境突發事件應急預案演練記錄
- 定期清洗消毒空調及通風設施制度
- 實戰經驗:2024年記者證考試試題及答案
- 無線電基礎知識培訓課件
- 投資咨詢工程師項目后評價試題及答案
- 4.1 基因指導蛋白質的合成(課件)高一下學期生物人教版(2019)必修2
- 醫療器械質量管理體系制度
- 出租車司機崗前教育培訓
- 廣東省梅州市五華縣2023-2024學年二年級下學期數學期中試卷(含答案)
- 《水土保持監測技術規范SLT 277-2024》知識培訓
評論
0/150
提交評論