




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆云南省曲靖市沾益區第四中學高三4月考試題-數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.閱讀名著,品味人生,是中華民族的優良傳統.學生李華計劃在高一年級每周星期一至星期五的每天閱讀半個小時中國四大名著:《紅樓夢》、《三國演義》、《水滸傳》及《西游記》,其中每天閱讀一種,每種至少閱讀一次,則每周不同的閱讀計劃共有()A.120種 B.240種 C.480種 D.600種2.已知定義在上函數的圖象關于原點對稱,且,若,則()A.0 B.1 C.673 D.6743.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件4.公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數據:)A.48 B.36 C.24 D.125.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.6.二項式展開式中,項的系數為()A. B. C. D.7.如果直線與圓相交,則點與圓C的位置關系是()A.點M在圓C上 B.點M在圓C外C.點M在圓C內 D.上述三種情況都有可能8.若向量,,則與共線的向量可以是()A. B. C. D.9.已知的展開式中第項與第項的二項式系數相等,則奇數項的二項式系數和為().A. B. C. D.10.如圖,在棱長為4的正方體中,E,F,G分別為棱AB,BC,的中點,M為棱AD的中點,設P,Q為底面ABCD內的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.11.幻方最早起源于我國,由正整數1,2,3,……,這個數填入方格中,使得每行、每列、每條對角線上的數的和相等,這個正方形數陣就叫階幻方.定義為階幻方對角線上所有數的和,如,則()A.55 B.500 C.505 D.505012.劉徽是我國魏晉時期偉大的數學家,他在《九章算術》中對勾股定理的證明如圖所示.“勾自乘為朱方,股自乘為青方,令出入相補,各從其類,因就其余不移動也.合成弦方之冪,開方除之,即弦也”.已知圖中網格紙上小正方形的邊長為1,其中“正方形為朱方,正方形為青方”,則在五邊形內隨機取一個點,此點取自朱方的概率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數為______.(用數字作答)14.如圖,機器人亮亮沿著單位網格,從地移動到地,每次只移動一個單位長度,則亮亮從移動到最近的走法共有____種.15.曲線在點(1,1)處的切線與軸及直線=所圍成的三角形面積為,則實數=____。16.已知正項等比數列中,,則__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)為了保障全國第四次經濟普查順利進行,國家統計局從東部選擇江蘇,從中部選擇河北、湖北,從西部選擇寧夏,從直轄市中選擇重慶作為國家綜合試點地區,然后再逐級確定普查區域,直到基層的普查小區,在普查過程中首先要進行宣傳培訓,然后確定對象,最后入戶登記,由于種種情況可能會導致入戶登記不夠順利,這為正式普查提供了寶貴的試點經驗,在某普查小區,共有50家企事業單位,150家個體經營戶,普查情況如下表所示:普查對象類別順利不順利合計企事業單位401050個體經營戶10050150合計14060200(1)寫出選擇5個國家綜合試點地區采用的抽樣方法;(2)根據列聯表判斷是否有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”;(3)以該小區的個體經營戶為樣本,頻率作為概率,從全國個體經營戶中隨機選擇3家作為普查對象,入戶登記順利的對象數記為,寫出的分布列,并求的期望值.附:0.100.0100.0012.7066.63510.82818.(12分)已知函數,.(1)當時,判斷是否是函數的極值點,并說明理由;(2)當時,不等式恒成立,求整數的最小值.19.(12分)已知拋物線E:y2=2px(p>0),焦點F到準線的距離為3,拋物線E上的兩個動點A(x1,y1)和B(x2,y2),其中x1≠x2且x1+x2=1.線段AB的垂直平分線與x軸交于點C.(1)求拋物線E的方程;(2)求△ABC面積的最大值.20.(12分)如圖,三棱柱中,側面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.21.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.22.(10分)已知函數(1)若對任意恒成立,求實數的取值范圍;(2)求證:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
首先將五天進行分組,再對名著進行分配,根據分步乘法計數原理求得結果.【詳解】將周一至周五分為組,每組至少天,共有:種分組方法;將四大名著安排到組中,每組種名著,共有:種分配方法;由分步乘法計數原理可得不同的閱讀計劃共有:種本題正確選項:【點睛】本題考查排列組合中的分組分配問題,涉及到分步乘法計數原理的應用,易錯點是忽略分組中涉及到的平均分組問題.2、B【解析】
由題知為奇函數,且可得函數的周期為3,分別求出知函數在一個周期內的和是0,利用函數周期性對所求式子進行化簡可得.【詳解】因為為奇函數,故;因為,故,可知函數的周期為3;在中,令,故,故函數在一個周期內的函數值和為0,故.故選:B.【點睛】本題考查函數奇偶性與周期性綜合問題.其解題思路:函數的奇偶性與周期性相結合的問題多考查求值問題,常利用奇偶性及周期性進行變換,將所求函數值的自變量轉化到已知解析式的函數定義域內求解.3、C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.4、C【解析】
由開始,按照框圖,依次求出s,進行判斷。【詳解】,故選C.【點睛】框圖問題,依據框圖結構,依次準確求出數值,進行判斷,是解題關鍵。5、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關鍵在于,巧妙構造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉化,屬于中檔題.6、D【解析】
寫出二項式的通項公式,再分析的系數求解即可.【詳解】二項式展開式的通項為,令,得,故項的系數為.故選:D【點睛】本題主要考查了二項式定理的運算,屬于基礎題.7、B【解析】
根據圓心到直線的距離小于半徑可得滿足的條件,利用與圓心的距離判斷即可.【詳解】直線與圓相交,圓心到直線的距離,即.也就是點到圓的圓心的距離大于半徑.即點與圓的位置關系是點在圓外.故選:【點睛】本題主要考查直線與圓相交的性質,考查點到直線距離公式的應用,屬于中檔題.8、B【解析】
先利用向量坐標運算求出向量,然后利用向量平行的條件判斷即可.【詳解】故選B【點睛】本題考查向量的坐標運算和向量平行的判定,屬于基礎題,在解題中要注意橫坐標與橫坐標對應,縱坐標與縱坐標對應,切不可錯位.9、D【解析】因為的展開式中第4項與第8項的二項式系數相等,所以,解得,所以二項式中奇數項的二項式系數和為.考點:二項式系數,二項式系數和.10、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內的部分)上,顯然關于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質求得最小值.11、C【解析】
因為幻方的每行、每列、每條對角線上的數的和相等,可得,即得解.【詳解】因為幻方的每行、每列、每條對角線上的數的和相等,所以階幻方對角線上數的和就等于每行(或每列)的數的和,又階幻方有行(或列),因此,,于是.故選:C【點睛】本題考查了數陣問題,考查了學生邏輯推理,數學運算的能力,屬于中檔題.12、C【解析】
首先明確這是一個幾何概型面積類型,然后求得總事件的面積和所研究事件的面積,代入概率公式求解.【詳解】因為正方形為朱方,其面積為9,五邊形的面積為,所以此點取自朱方的概率為.故選:C【點睛】本題主要考查了幾何概型的概率求法,還考查了數形結合的思想和運算求解的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數為9+9+5=1,得解.【詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數為5,綜合①②③得:不同的選法種數為9+9+5=1,故答案為:1.【點睛】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.14、【解析】
分三步來考查,先從到,再從到,最后從到,分別計算出三個步驟中對應的走法種數,然后利用分步乘法計數原理可得出結果.【詳解】分三步來考查:①從到,則亮亮要移動兩步,一步是向右移動一個單位,一步是向上移動一個單位,此時有種走法;②從到,則亮亮要移動六步,其中三步是向右移動一個單位,三步是向上移動一個單位,此時有種走法;③從到,由①可知有種走法.由分步乘法計數原理可知,共有種不同的走法.故答案為:.【點睛】本題考查格點問題的處理,考查分步乘法計數原理和組合計數原理的應用,屬于中等題.15、或1【解析】
利用導數的幾何意義,可得切線的斜率,以及切線方程,求得切線與軸和的交點,由三角形的面積公式可得所求值.【詳解】的導數為,可得切線的斜率為3,切線方程為,可得,可得切線與軸的交點為,,切線與的交點為,可得,解得或。【點睛】本題主要考查利用導數求切線方程,以及直線方程的運用,三角形的面積求法。16、【解析】
利用等比數列的通項公式將已知兩式作商,可得,再利用等比數列的性質可得,再利用等比數列的通項公式即可求解.【詳解】由,所以,解得.,所以,所以.故答案為:【點睛】本題考查了等比數列的通項公式以及等比中項,需熟記公式,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分層抽樣,簡單隨機抽樣(抽簽亦可)(2)有(3)分布列見解析,【解析】
(1)根據題意可以選用分層抽樣法,或者簡單隨機抽樣法.(2)由已知條件代入公式計算出結果,進而可以得到結果.(3)由已知條件計算出的分布列,進而求出的數學期望.【詳解】(1)分層抽樣,簡單隨機抽樣(抽簽亦可).(2)將列聯表中的數據代入公式計算得所以有的把握認為“此普查小區的入戶登記是否順利與普查對象的類別有關”.(3)以頻率作為概率,隨機選擇1家個體經營戶作為普查對象,入戶登記順利的概率為.可取0,1,2,3,計算可得的分布列為:0123【點睛】本題考查了運用數學模型解答實際生活問題,運用合理的抽樣方法,計算以及數據的分布列和數學期望,需要正確運用公式進行求解,本題屬于常考題型,需要掌握解題方法.18、(1)是函數的極大值點,理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導得,由于函數單調性不好判斷,故而構造函數,繼續求導,判斷導函數在左右兩邊的正負情況,最后得出,是函數的極大值點;(2)利用題目已有條件得,再證明時,不等式恒成立,即證,從而可知整數的最小值為1.【詳解】解:(1)當時,.令,則當時,.即在內為減函數,且∴當時,;當時,.∴在內是增函數,在內是減函數.綜上,是函數的極大值點.(2)由題意,得,即.現證明當時,不等式成立,即.即證令則∴當時,;當時,.∴在內單調遞增,在內單調遞減,的最大值為.∴當時,.即當時,不等式成立.綜上,整數的最小值為.【點睛】本題考查學生利用導數處理函數的極值,最值,判斷函數的單調性,由此來求解函數中的參數的取值范圍,對學生要求較高,然后需要學生能構造新函數處理恒成立問題,為難題19、(1)y2=6x(2).【解析】
(1)根據拋物線定義,寫出焦點坐標和準線方程,列方程即可得解;(2)根據中點坐標表示出|AB|和點到直線的距離,得出面積,利用均值不等式求解最大值.【詳解】(1)拋物線E:y2=2px(p>0),焦點F(,0)到準線x的距離為3,可得p=3,即有拋物線方程為y2=6x;(2)設線段AB的中點為M(x0,y0),則,y0,kAB,則線段AB的垂直平分線方程為y﹣y0(x﹣2),①可得x=5,y=0是①的一個解,所以AB的垂直平分線與x軸的交點C為定點,且點C(5,0),由①可得直線AB的方程為y﹣y0(x﹣2),即x(y﹣y0)+2②代入y2=6x可得y2=2y0(y﹣y0)+12,即y2﹣2y0y+2y02=0③,由題意y1,y2是方程③的兩個實根,且y1≠y2,所以△=1y02﹣1(2y02﹣12)=﹣1y02+18>0,解得﹣2y0<2,|AB|,又C(5,0)到線段AB的距離h=|CM|,所以S△ABC|AB|h?,當且僅當9+y02=21﹣2y02,即y0=±,A(,),B(,),或A(,),B(,)時等號成立,所以S△ABC的最大值為.【點睛】此題考查根據焦點和準線關系求拋物線方程,根據直線與拋物線位置關系求解三角形面積的最值,表示三角形的面積關系常涉及韋達定理整體代入,拋物線中需要考慮設點坐標的技巧,處理最值問題常用函數單調性求解或均值不等式求最值.20、(1)見解析;(2).【解析】
(1)根據菱形的特征和題中條件得到平面,結合線面垂直的定義和判定定理即可證明;
2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年開學第一課安全主題班會教案范例
- 2025年玻璃花盆架項目可行性研究報告
- 2025年猴頭菇多糖項目可行性研究報告
- 2025年牛皮紙繩機項目可行性研究報告
- 石家莊財經職業學院《時尚健美操》2023-2024學年第二學期期末試卷
- 浙江省淮北市2025年三年級數學第二學期期末學業水平測試試題含解析
- 上海市青浦區達標名校2025年初三5月份考試物理試題含解析
- 三亞城市職業學院《醫學實驗基本技術與設備》2023-2024學年第二學期期末試卷
- 山東交通學院《大數據基礎實踐》2023-2024學年第二學期期末試卷
- 四川省遂寧市重點中學2024-2025學年初三畢業班聯考生物試題試卷含解析
- DB3309T 86-2021 晚稻楊梅生產技術規程
- 水電安裝合同范本6篇
- 2024年03月徽商銀行社會招考筆試歷年參考題庫附帶答案詳解
- 2024中國兒童營養趨勢洞察報告
- 第一章-地震工程學概論
- 孩子畏難情緒心理健康教育
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 手術患者液體管理
- 中國融通集團北京企業管理共享中心社會招聘筆試真題2023
- T-CCSAS 042-2023 在役常壓儲罐檢驗與適用性評價技術規范
- 2024年10月自考15040習概試題及答案含評分參考
評論
0/150
提交評論