




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共6頁江蘇省揚州樹人學校2024-2025學年九年級數(shù)學第一學期開學調研模擬試題題號一二三四五總分得分A卷(100分)一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、(4分)如圖,若一次函數(shù)的圖象與x軸的交于點,與y軸交于點下列結論:①關于x的方程的解為;②隨x的增大而減??;③關于x的方程的解為;④關于x的不等式的解為其中所有正確的為A.①②③ B.①③ C.①②④ D.②④2、(4分)順次連結一個平行四邊形的各邊中點所得四邊形的形狀是()A.平行四邊形 B.矩形 C.菱形 D.正方形3、(4分)如圖,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,則下列結論:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正確的有()A.2個 B.3個 C.4個 D.1個4、(4分)小馬虎在下面的計算中只作對了一道題,他做對的題目是()A. B.a3÷a=a2C. D.=﹣15、(4分)菱形的對角線長分別是,則這個菱形的面積是()A. B. C. D.6、(4分)要使代數(shù)式有意義,則x的取值范圍是()A.x≠2 B.x≥2 C.x>2 D.x≤27、(4分)如圖,直線y=kx+b與坐標軸的兩交點分別為A(2,0)和B(0,-3),則不等式kx+b+3≤0的解為()A.x≤0B.x≥0C.x≥2D.x≤28、(4分)若3x>﹣3y,則下列不等式中一定成立的是()A.x>y B.x<y C.x﹣y>0 D.x+y>0二、填空題(本大題共5個小題,每小題4分,共20分)9、(4分)如圖,在平面直角坐標系中,直線y=﹣x+3與x軸,y軸交于A,B兩點,分別以點A,B為圓心,大于AB長為半徑作圓弧,兩弧在第一象限交于點C,若點C的坐標為(m+1,7﹣m),則m的值是_____.10、(4分)如圖,把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C,A’B’交AC于點D,若∠A’DC=90°,則∠A=°.11、(4分)如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,CD=16,則D到AB邊的距離是.12、(4分)如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C的面積和是9,則正方形D的邊長為__________.13、(4分)如圖,在中,,為的中線,過點作于點,過點作的平行線,交的延長線于點,在的延長線上截取,連接、.若,,則________.三、解答題(本大題共5個小題,共48分)14、(12分)為鼓勵學生積極參加體育鍛煉,某學校準備購買一批運動鞋供學生借用,現(xiàn)從各年級隨機抽取了部分學生所穿運動鞋的號碼,繪制了如下的統(tǒng)計圖①和圖②(不完整).請根據(jù)相關信息,解答下列問題:(1)本次接受隨機抽樣調查的學生人數(shù)為,圖①中m的值為;(2)請補全條形統(tǒng)計圖,并求本次調查樣本數(shù)據(jù)的眾數(shù)和中位數(shù);(3)根據(jù)樣本數(shù)據(jù),若學校計劃購買400雙運動鞋,建議購買35號運動鞋多少雙?15、(8分)如圖,等腰△ABC中,已知AC=BC=2,AB=4,作∠ACB的外角平分線CF,點E從點B沿著射線BA以每秒2個單位的速度運動,過點E作BC的平行線交CF于點F.(1)求證:四邊形BCFE是平行四邊形;(2)當點E是邊AB的中點時,連接AF,試判斷四邊形AECF的形狀,并說明理由;(3)設運動時間為t秒,是否存在t的值,使得以△EFC的其中兩邊為鄰邊所構造的平行四邊形恰好是菱形?不存在的,試說明理由;存在的,請直接寫出t的值.答:t=________.16、(8分)如圖1,在平面直角坐標系中,矩形OABC如圖所示放置,點A在x軸上,點B的坐標為(n,1)(n>0),將此矩形繞O點逆時針旋轉90°得到矩形OA′B′C′,拋物線y=ax2+bx+c(a≠0)經過A、A′、C′三點.(1)求此拋物線的解析式(a、b、c可用含n的式子表示);(2)若拋物線對稱軸是x=1的一條直線,直線y=kx+2(k≠0)與拋物線相交于兩點D(x1,y1)、E(x2、y2)(x1<x2),當|x1﹣x2|最小時,求拋物線與直線的交點D和E的坐標;(3)若拋物線對稱軸是x=1的一條直線,如圖2,點M是拋物線的頂點,點P是y軸上一動點,點Q是坐標平面內一點,四邊形APQM是以PM為對角線的平行四邊形,點Q′與點Q關于直線AM對稱,連接MQ′、PQ′,當△PMQ′與平行四邊形APQM重合部分的面積是平行四邊形的面積的時,求平行四邊形APQM的面積.17、(10分)化簡或求值(1)(1+)÷(2)1﹣÷,其中a=﹣,b=1.18、(10分)解下列一元二次方程(1)(2)B卷(50分)一、填空題(本大題共5個小題,每小題4分,共20分)19、(4分)如圖所示,某人在D處測得山頂C的仰角為30°,向前走200米來到山腳A處,測得山坡AC的坡度i=1∶0.5,則山的高度為____________米.20、(4分)一次函數(shù)y=kx+b(k≠0,k,b為常數(shù))的圖象如圖所示,則關于x的不等式kx+b<0的解集為______.21、(4分)如圖,已知正方形ABCD的邊長為3,E、F分別是AB、BC邊上的點,且∠EDF=45°,將△DAE繞點D逆時針旋轉90°,得到△DCM.若AE=1,則FM的長為.22、(4分)如圖,△ABC,∠A=90°,AB=AC.在△ABC內作正方形A1B1C1D1,使點A1,B1分別在兩直角邊AB,AC上,點C1,D1在斜邊BC上,用同樣的方法,在△C1B1B內作正方形A2B2C2D2;在△CB2C2內作正方形A3B3C3D3……,若AB=1,則正方形A2018B2018C2018D2018的邊長為_____.23、(4分)如圖,反比例函數(shù)y=的圖象經過矩形OABC的一個頂點B,則矩形OABC的面積等于___.二、解答題(本大題共3個小題,共30分)24、(8分)折疊矩形ABCD,使點D落在BC邊上的點F處.(1)求證:△ABF∽△FCE;(2)若DC=8,CF=4,求矩形ABCD的面積S.25、(10分)問題:探究函數(shù)的圖象與性質.小華根據(jù)學習函數(shù)的經驗,對函數(shù)的圖象與性質進行了探究.下面是小華的探究過程,請補充完整:在函數(shù)y=|x|﹣2中,自變量x可以是任意實數(shù);Ⅰ如表是y與x的幾組對應值.y…﹣3﹣2﹣10123…x…10﹣1﹣2﹣10m…①m=;②若A(n,8),B(10,8)為該函數(shù)圖象上不同的兩點,則n=;Ⅱ如圖,在平面直角坐標系xOy中,描出以上表中各對對應值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;根據(jù)函數(shù)圖象可得:①該函數(shù)的最小值為;②該函數(shù)的另一條性質是.26、(12分)如圖,正方形網格中的每個小正方形的邊長都是1,每個小格的頂點叫格點.(1)在圖中以格點為頂點畫一個面積為5的正方形.(2)如圖2所示,A,B,C是小正方形的頂點,求∠ABC的度數(shù).
參考答案與詳細解析一、選擇題(本大題共8個小題,每小題4分,共32分,每小題均有四個選項,其中只有一項符合題目要求)1、A【解析】
根據(jù)一次函數(shù)的性質進行分析即可.一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-,0);當k>0時,直線必通過一、三象限,y隨x的增大而增大;當k<0時,直線必通過二、四象限,y隨x的增大而減小.根據(jù)2分析函數(shù)與方程和不等式的關系.【詳解】解:根據(jù)題意可知:由直線與x軸交點坐標可知關于x的方程的解為;由圖象可知隨x的增大而減??;由直線與y軸的交點坐標可知關于x的方程的解為;由函數(shù)圖象分析出y>0時,關于x的不等式的解為所以,正確結論是:①②③.故選A.本題考核知識點:一次函數(shù)的性質.解題關鍵點:結合函數(shù)的圖象分析問題.2、A【解析】
試題分析:連接平行四邊形的一條對角線,根據(jù)中位線定理,可得新四邊形的一組對邊平行且等于對角線的一半,即一組對邊平行且相等.則新四邊形是平行四邊形.解:順次連接平行四邊形ABCD各邊中點所得四邊形必定是:平行四邊形,理由如下:(如圖)根據(jù)中位線定理可得:GF=BD且GF∥BD,EH=BD且EH∥BD,∴EH=FG,EH∥FG,∴四邊形EFGH是平行四邊形.故選A.考點:中點四邊形.3、B【解析】
根據(jù)題中條件,結合圖形及角平分線的性質得到結論,與各選項進行比對,排除錯誤答案,選出正確的結果.【詳解】∵AD平分∠BAC
∴∠DAC=∠DAE
∵∠C=90°,DE⊥AB
∴∠C=∠E=90°
∵AD=AD
∴△DAC≌△DAE
∴∠CDA=∠EDA
∴①AD平分∠CDE正確;
無法證明∠BDE=60°,
∴③DE平分∠ADB錯誤;
∵BE+AE=AB,AE=AC
∴BE+AC=AB
∴④BE+AC=AB正確;
∵∠BDE=90°-∠B,∠BAC=90°-∠B
∴∠BDE=∠BAC
∴②∠BAC=∠BDE正確.
故選:B.考查了角平分線的性質,解題關鍵是靈活運用其性質進行分析.4、B【解析】
A.;B.;C.;D..故選B.5、B【解析】
根據(jù)菱形的面積公式:菱形面積=ab(a、b是兩條對角線的長度)可得到答案.【詳解】菱形的面積:故選:B.此題主要考查了菱形的面積公式,關鍵是熟練掌握面積公式.6、B【解析】
二次根式的被開方數(shù)x-2是非負數(shù).【詳解】解:根據(jù)題意,得
x-2≥0,
解得,x≥2;
故選:B.考查了二次根式的意義和性質.概念:式子(a≥0)叫二次根式.性質:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.7、A.【解析】試題分析:由kx+b+3≤1得kx+b≤-3,直線y=kx+b與y軸的交點為B(1,-3),即當x=1時,y=-3,∵函數(shù)值y隨x的增大而增大,∴當x≥1時,函數(shù)值kx+b≥-3,∴不等式kx+b+3≥1的解集是x≥1.故選A.考點:一次函數(shù)與一元一次不等式.8、D【解析】
利用不等式的性質由已知條件可得到x+y>1,從而得到正確選項.【詳解】∵3x>﹣3y,∴3x+3y>1,∴x+y>1.故選:D.本題考查了不等式的性質:應用不等式的性質應注意的問題,在不等式的兩邊都乘以(或除以)同一個負數(shù)時,一定要改變不等號的方向;當不等式的兩邊要乘以(或除以)含有字母的數(shù)時,一定要對字母是否大于1進行分類討論.二、填空題(本大題共5個小題,每小題4分,共20分)9、3【解析】
在y=﹣x+3中,令x=0則y=3,令y=0,則x=3,∴OA=3,OB=3,∴由題意可知,點C在∠AOB的平分線上,∴m+1=7﹣m,解得:m=3.故答案為3.10、55.【解析】
試題分析:∵把△ABC繞點C按順時針方向旋轉35°,得到△A’B’C∴∠ACA’=35°,∠A=∠A’,.∵∠A’DC=90°,∴∠A’=55°.∴∠A=55°.考點:1.旋轉的性質;2.直角三角形兩銳角的關系.11、1.【解析】
作DE⊥AB,根據(jù)角平分線性質可得:DE=CD=1.【詳解】如圖,作DE⊥AB,因為∠C=90°,AD是∠BAC的平分線,CD=1,所以,DE=CD=1.即:D到AB邊的距離是1.故答案為1本題考核知識點:角平分線性質.解題關鍵點:利用角平分線性質求線段長度.12、3【解析】
由勾股定理可知,兩只角邊的平方和等于斜邊的平方,在此題中,各邊的平方可以代表每個正方形的面積.建立等式,通過移項可得正方形D的面積,再開平方得到邊長.【詳解】每個正方形的面積=直角三角形各邊的平方再由勾股定理可聯(lián)立等式即,又正方形A、B、C的面積和是9則,所以,所以正方形D的邊長為本題考察了直角三角形的勾股定理的應用,務必清楚的是題中每個正方行的面積=直角三角形各邊的平方.13、5【解析】
首先可判斷四邊形BGFD是平行四邊形,再由直角三角形斜邊中線等于斜邊一半,可得BD=FD,則可判斷四邊形BGFD是菱形,設GF=x,則AF=13-x,AC=2x,在Rt△ACF中利用勾股定理可求出x的值.【詳解】解:∵,,∴四邊形是平行四邊形,∵,∴,又∵點是中點,∴,∴四邊形是菱形,設,則,,∵在中,,∴,即,解得:,即.故答案是:5.本題考查了菱形的判定與性質、勾股定理及直角三角形的斜邊中線的性質,解答本題的關鍵是判斷出四邊形BGFD是菱形.三、解答題(本大題共5個小題,共48分)14、(1)40,15;(2)見解析;(3)120雙【解析】
(1)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以得到調查的總人數(shù)和m的值;
(2)根據(jù)(1)中的結果可以求得34號運動鞋的人數(shù),從而可以將條形統(tǒng)計圖補充完整,進而得到相應的眾數(shù)和中位數(shù);
(3)根據(jù)統(tǒng)計圖中的數(shù)據(jù)可以解答本題.【詳解】(1)12÷30%=40,
m%=×100%=15%,
故答案為:40,15;
(2)34號運動鞋為:40-12-10-8-4=6,
補全的條形統(tǒng)計圖如圖所示,由條形統(tǒng)計圖可得,本次調查樣本數(shù)據(jù)的眾數(shù)和中位數(shù)分別是:35號、36號;
(3)400×30%=120(雙),
答:建議購買35號運動鞋120雙.考查條形統(tǒng)計圖、扇形統(tǒng)計圖、用樣本估計總體,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.15、(1)見解析;(2)四邊形AECF是矩形,理由見解析;(3)秒或5秒或2秒【解析】
(1)已知EF∥BC,結合已知條件利用兩組對邊分別平行證明BCFE是平行四邊形;因為AC=BC,等角對等邊,得∠B=∠BAC,CF平分∠ACH,則∠ACF=∠FCH,結合∠ACH=∠B+∠BAC=∠ACF+∠FCH,等量代換得∠FCH=∠B,則同位角相等兩直線平行,得BE∥CF,結合EF∥BC,證得四邊形BCFE是平行四邊形;(2)先證∠AED=90°,再證四邊形AECF是平行四邊形,則四邊形AECF是平行四邊形是矩形;
AC=BC,E是AB的中點,由等腰三角形三線合一定理知CE⊥AB,因為四邊形BCFE是平行四邊形,得CF=BE=AE,AE∥CF,一組對邊平行且相等,且有一內角是直角,則四邊形AECF是矩形;(3)分三種情況進行①以EF和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,則鄰邊BE=BC,這時根據(jù)S=vt=2t=,求出t即可;②以CE和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,過C作CD⊥AB于D,AC=BC,三線合一則BD的長可求,在Rt△BDC中運用勾股定理求出CD的長,把ED長用含t的代數(shù)式表示出來,現(xiàn)知EG=CF=EC=EB=2t,在Rt△EDC中,利用勾股定理列式即可求出t;③以CE和EF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,則CA=AF=BC,此時E與A重合,則2t=AB=4,求得t值即可.【詳解】(1)證明:如圖1,∵AC=BC,∴∠B=∠BAC,∵CF平分∠ACH,∴∠ACF=∠FCH,∵∠ACH=∠B+∠BAC=∠ACF+∠FCH,∴∠FCH=∠B,∴BE∥CF,∵EF∥BC,∴四邊形BCFE是平行四邊形(2)解:四邊形AECF是矩形,理由是:如圖2,∵E是AB的中點,AC=BC,∴CE⊥AB,∴∠AEC=90°,由(1)知:四邊形BCFE是平行四邊形,∴CF=BE=AE,∵AE∥CF,∴四邊形AECF是矩形(3)秒或5秒或2秒分三種情況:①以EF和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖3,∴BE=BC,即2t=2,t=;②以CE和CF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖4,過C作CD⊥AB于D,∵AC=BC,AB=4,∴BD=2,由勾股定理得:CD===6,∵EG2=EC2,即(2t)2=62+(2t﹣2)2,t=5;③以CE和EF兩邊為鄰邊所構造的平行四邊形恰好是菱形時,如圖5,CA=AF=BC,此時E與A重合,∴t=2,綜上,t的值為秒或5秒或2秒;故答案為:秒或5秒或2秒.本題主要考查平行四邊形,矩形,菱形等四邊形的性質與證明,熟悉基本定理是解題基礎,本題第三問的關鍵在于能夠分情況討論列出方程.16、(3)y=﹣x2+(n﹣3)x+n;(2)D(﹣3,5),E(3,4);(2)5或3.【解析】
(3)先根據(jù)四邊形ABCD是矩形,點B的坐標為(n,3)(n>5),求出點A、C的坐標,再根據(jù)圖形旋轉的性質求出A′、C′的坐標;把A、A′、C′三點的坐標代入即可得出a、b、c的值,進而得出其拋物線的解析式;
(2)將一次函數(shù)與二次函數(shù)組成方程組,得到一元二次方程x2+(k-2)x-3=5,根據(jù)根與系數(shù)的關系求出k的值,進而求出D(-3,5),E(3,4);
(2)設P(5,p),根據(jù)平行四邊形性質及點M坐標可得Q(2,4+p),分P點在AM下方與P點在AM上方兩種情況,根據(jù)重合部分的面積關系及對稱性求得點P的坐標后即可得?APQM面積.【詳解】解:(3)∵四邊形ABCO是矩形,點B的坐標為(n,3)(n>5),∴A(n,5),C(5,3),∵矩形OA′B′C′由矩形OABC旋轉而成,∴A′(5,n),C′(﹣3,5);將拋物線解析式為y=ax2+bx+c,∵A(n,5),A′(5,n),C′(﹣3,5),∴,解得,∴此拋物線的解析式為:y=﹣x2+(n﹣3)x+n;(2)對稱軸為x=3,得﹣=3,解得n=2,則拋物線的解析式為y=﹣x2+2x+2.由,整理可得x2+(k﹣2)x﹣3=5,∴x3+x2=﹣(k﹣2),x3x2=﹣3.∴(x3﹣x2)2=(x3+x2)2﹣4x3x2=(k﹣2)2+4.∴當k=2時,(x3﹣x2)2的最小值為4,即|x3﹣x2|的最小值為2,∴x2﹣3=5,由x3<x2可得x3=﹣3,x2=3,即y3=4,y2=5.∴當|x3﹣x2|最小時,拋物線與直線的交點為D(﹣3,5),E(3,4);(2)①當P點在AM下方時,如答圖3,設P(5,p),易知M(3,4),從而Q(2,4+p),∵△PMQ′與?APQM重合部分的面積是?APQM面積的,∴PQ′必過AM中點N(5,2),∴可知Q′在y軸上,易知QQ′的中點T的橫坐標為3,而點T必在直線AM上,故T(3,4),從而T、M重合,∴?APQM是矩形,∵易得直線AM解析式為:y=2x+2,∵MQ⊥AM,∴直線QQ′:y=﹣x+,∴4+p=﹣×2+,解得:p=﹣,∴PN=,∴S?APQM=2S△AMP=4S△ANP=4××PN×AO=4×××3=5;②當P點在AM上方時,如答圖2,設P(5,p),易知M(3,4),從而Q(2,4+p),∵△PMQ′與?APQM重合部分的面積是?APQM面積的,∴PQ′必過QM中點R(,4+),易得直線QQ′:y=﹣x+p+5,聯(lián)立,解得:x=,y=,∴H(,),∵H為QQ′中點,故易得Q′(,),由P(5,p)、R(,4+)易得直線PR解析式為:y=(﹣)x+p,將Q′(,)代入到y(tǒng)=(﹣)x+p得:=(﹣)×+p,整理得:p2﹣9p+34=5,解得p3=7,p2=2(與AM中點N重合,舍去),∴P(5,7),∴PN=5,∴S?APQM=2S△AMP=2××PN×|xM﹣xA|=2××5×2=3.綜上所述,?APQM面積為5或3.本題為二次函數(shù)的綜合應用,涉及待定系數(shù)法確定函數(shù)解析式、二次函數(shù)的性質、一元二次方程根與系數(shù)的關系、方程思想及分類討論思想等知識點.在(2)中利用求得n的值是解題的關鍵,在(2)中確定出k的值是解題的關鍵,在(2)中根據(jù)點P的位置分類討論及根據(jù)已知條件求出點P的坐標是解決本題的難點.17、(1)、;(2)、2.【解析】
原式括號中兩項通分并利用同分母分式的加法法則計算,同時利用除法法則變形,約分即可得到結果;原式第二項利用除法法則變形,約分后兩項通分并利用同分母分式的減法法則計算得到最簡結果,將a與b的值代入計算即可求出值.【詳解】解:(1)原式==(2)原式=1﹣?=1-=當a=﹣,b=1時,原式=2.考點:分式的化簡求值;分式的混合運算18、(1),;(2),.【解析】
(1)將方程左邊因式分解,繼而求解可得;(2)運用配方法求解即可.【詳解】(1)∵(x+3)(x+7)=0,∴x+3=0或x+7=0,解得:,;(2),,∴∴.本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結合方程的特點選擇合適、簡便的方法是解題的關鍵一、填空題(本大題共5個小題,每小題4分,共20分)19、【解析】本題是把實際問題轉化為解直角三角形問題,由題意,已知DA=200,∠CDB=30°,CB:AB=1:0.5,∠CBD=90°,求CB.設AB=x,則CB=2x,由三角函數(shù)得:=tan30°,即=,求出x,從求出CB.即求出山的高度.解:已知山坡AC的坡度i=1:0.5,∴設AB=x,則CB=2x,又某人在D處測得山頂C的仰角為30°,即,∠CDB=30°,∴=tan30°,即=,解得:x=,∴CB=2x=,故答案為.20、x>1【解析】
從圖象上得到函數(shù)的增減性及與x軸的交點的橫坐標,即能求得不等式kx+b<0的解集.【詳解】解:函數(shù)y=kx+b的圖象經過點(1,0),并且函數(shù)值y隨x的增大而減小,所以當x>1時,函數(shù)值小于0,即關于x的不等式kx+b<0的解集是x>1.故答案為x>1.此題主要考查了一次函數(shù)與一元一次不等式的關系:從函數(shù)的角度看,就是尋求使一次函數(shù)y=kx+b的值大于(或小于)0的自變量x的取值范圍;從函數(shù)圖象的角度看,就是確定直線y=kx+b在x軸上(或下)方部分所有的點的橫坐標所構成的集合.21、2.5【解析】試題分析:∵△DAE逆時針旋轉90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三點共線,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,DE=DM∠EDF=∠FDM∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=52,∴FM=5考點:1.旋轉的性質;2.全等三角形的判定與性質;3.正方形的性質.22、13×(23)【解析】
已知正方形A1B1C1D1的邊長為13,然后得到正方形A2B2C2D2的邊長為,然后得到規(guī)律,即可求解.【詳解】解:∵正方形A1B1C1D1的邊長為13正方形A2B2C2D2的邊長為1正方形A3B3C3D3的邊長為13…,正方形A2018B2018C2018D2018的邊長為13故答案為13本題考查了等腰直角三角形的性質和正方形的性質,解題關鍵是靈活應用等腰直角三角形三邊的關系進行幾何計算.23、4【解析】
因為過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積S是個定值,即S=|k|.【詳解】由于點B在反比例函數(shù)y=的圖
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 花藝師個人品牌建設的試題及答案
- 2024年輔導員考試真題回顧與試題及答案
- 農藥制劑考試試題及答案
- 2024年花藝師考試關鍵點及答案
- 深入解析2024福建事業(yè)單位考試試題及答案
- 電工(初級工)試題及答案
- 2024年農藝師考試模擬試題及答案講解
- 卡車員工考試題及答案解析
- 學習重點分析農藝師試題及答案
- 花藝師考試模擬題及答案解析
- 河南農商銀行系統(tǒng)招聘筆試真題2024
- 眼鏡定配工中級資格考試題庫
- Unit 3 Faster,highter,stronger Understanding Ideas The road to success群文閱讀說課稿 2024-2025學年高中英語人教版選擇性必修第一冊
- 沈陽市地圖課件
- 醫(yī)院醫(yī)療廢棄物管理制度
- 上海大學通信學院復試專業(yè)課英語
- 企業(yè)管理基礎知到智慧樹章節(jié)測試課后答案2024年秋山東經貿職業(yè)學院
- 清明節(jié)傳統(tǒng)文化知識主題班會184
- UL987標準中文版-2019固定和固定電動工具第八版
- 自考《英語二》高等教育自學考試試卷與參考答案(2025年)
- 2024年河北高中學業(yè)合格性考試歷史試題(含答案)
評論
0/150
提交評論