浙江省慈溪市六校2025屆高二上數學期末達標檢測試題含解析_第1頁
浙江省慈溪市六校2025屆高二上數學期末達標檢測試題含解析_第2頁
浙江省慈溪市六校2025屆高二上數學期末達標檢測試題含解析_第3頁
浙江省慈溪市六校2025屆高二上數學期末達標檢測試題含解析_第4頁
浙江省慈溪市六校2025屆高二上數學期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

浙江省慈溪市六校2025屆高二上數學期末達標檢測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.2021年11月,鄭州二七罷工紀念塔入選全國職工愛國主義教育基地名單.某數學建模小組為測量塔的高度,獲得了以下數據:甲同學在二七廣場A地測得紀念塔頂D的仰角為45°,乙同學在二七廣場B地測得紀念塔頂D的仰角為30°,塔底為C,(A,B,C在同一水平面上,平面ABC),測得,,則紀念塔的高CD為()A.40m B.63mC.m D.m2.設雙曲線的虛軸長為,焦距為,則雙曲線的漸近線方程為()A. B.C. D.3.已知橢圓方程為,則該橢圓的焦距為()A.1 B.2C. D.4.以軸為對稱軸,拋物線通徑的長為8,頂點在坐標原點的拋物線的方程是()A. B.C.或 D.或5.“”是“方程表示橢圓”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖,在平行六面體中,AC與BD的交點為M.設,則下列向量中與相等的向量是()A. B.C. D.7.橢圓的短軸長為()A.8 B.2C.4 D.8.已知函數,要使函數有三個零點,則的取值范圍是()A. B.C. D.9.對于實數a,b,c,下列命題中的真命題是()A.若,則 B.,則C.若,,則, D.若,則10.定義在區間上的函數的導函數的圖象如圖所示,則下列結論不正確的是()A.函數在區間上單調遞增 B.函數在區間上單調遞減C.函數在處取得極大值 D.函數在處取得極小值11.下列雙曲線中,以為一個焦點,以為一個頂點的雙曲線方程是()A. B.C. D.12.礦山爆破時,在爆破點處炸開的礦石的運動軌跡可看作是不同的拋物線,根據地質、炸藥等因素可以算出這些拋物線的范圍,這個范圍的邊界可以看作一條拋物線,叫“安全拋物線”,如圖所示.已知某次礦山爆破時的安全拋物線的焦點為,則這次爆破時,礦石落點的最遠處到點的距離為()A. B.2C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為1的正方體中,___________.14.已知雙曲線左、右焦點分別為,,點P是雙曲線左支上一點且,則______15.已知數列前項和為,且,則_______.16.若函數在區間上的最大值是,則__________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知首項為1的數列滿足.(1)求數列的通項公式;(2)記,求數列的前n項和.18.(12分)已知點,圓.(1)若直線l過點M,且被圓C截得的弦長為,求直線l的方程;(2)設O為坐標原點,點N在圓C上運動,線段的中點為P,求點P的軌跡方程.19.(12分)已知命題實數滿足不等式,命題實數滿足不等式.(1)當時,命題,均為真命題,求實數的取值范圍;(2)若是的充分不必要條件,求實數的取值范圍.20.(12分)已知O為坐標原點,點,設動點W到直線的距離為d,且,.(1)記動點W的軌跡為曲線C,求曲線C的方程;(2)若直線l與曲線C交于A,B兩點,直線與曲線C交于,兩點,直線l與的交點為P(P不在曲線C上),且,設直線l,的斜率分別為k,.求證:為定值.21.(12分)已知函數.(1)求的導數;(2)求函數的圖象在點處的切線方程.22.(10分)已知函數在處有極值,且其圖象經過點.(1)求的解析式;(2)求在的最值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】設,先表示出,再利用余弦定理即可求解.【詳解】如圖所示,,設塔高為,因為平面ABC,所以,所以,又,即,解得.故選:B.2、B【解析】求出、的值,即可得出雙曲線的漸近線方程.【詳解】由已知可得,,則,因此,該雙曲線的漸近線方程為.故選:B.3、B【解析】根據橢圓中之間的關系,結合橢圓焦距的定義進行求解即可.【詳解】由橢圓的標準方程可知:,則焦距為,故選:B.4、C【解析】由分焦點在軸的正半軸上和焦點在軸的負半軸上,兩種情況討論設出方程,根據,即可求解.【詳解】由題意,拋物線的頂點在原點,以軸為對稱軸,且通經長為8,當拋物線的焦點在軸的正半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為;當拋物線的焦點在軸的負半軸上時,設拋物線的方程為,可得,解得,所以拋物線方程為,所以所求拋物線的方程為.故選:C.5、B【解析】方程表示橢圓,可得,解出的范圍即可判斷出結論.【詳解】∵方程表示橢圓,∴解得或,故“”是“方程表示橢圓”的必要不充分條件.故選:B6、B【解析】根據代入計算化簡即可.【詳解】故選:B.7、C【解析】根據橢圓的標準方程求出,進而得出短軸長.【詳解】由,可得,所以短軸長為.故選:C.8、A【解析】要使函數有三個解,則與圖象有三個交點,數形結合即可求解.【詳解】要使函數有三個解,則與圖象有三個交點,因為當時,,所以,可得在上遞減,在遞增,所以,有最小值,且時,,當趨向于負無窮時,趨向于0,但始終小于0,當時,單調遞減,由圖像可知:所以要使函數有三個零點,則.故選:A9、C【解析】對于選項A,可以舉反例判斷;對于選項BCD可以利用作差法判斷得解.【詳解】解:A.若,則不一定成立.如:.所以該選項錯誤;B.,所以,所以該選項錯誤;C.,所以該選項正確;D.,所以該選項錯誤.故選:C10、C【解析】根據函數的單調性和函數的導數的值的正負的關系,可判斷A,B的結論;根據函數的極值點和函數的導數的關系可判斷、的結論【詳解】函數在上,故函數在上單調遞增,故正確;根據函數的導數圖象,函數在時,,故函數在區間上單調遞減,故正確;由A的分析可知函數在上單調遞增,故不是函數的極值點,故錯誤;根據函數的單調性,在區間上單調遞減,在上單調遞增,故函數處取得極小值,故正確,故選:11、C【解析】設出雙曲線方程,根據題意,求得,即可選擇.【詳解】因為雙曲線的一個焦點是,故可設雙曲線方程為,且;又為一個頂點,故可得,解得,則雙曲線方程為:.故選:.12、D【解析】根據給定條件求出拋物線的頂點,結合拋物線的性質求出p值即可計算作答.【詳解】依題意,拋物線的頂點坐標為,則拋物線的頂點到焦點的距離為,p>0,解得,于是得拋物線的方程為,由得,,即拋物線與軸的交點坐標為,因此,,所以礦石落點的最遠處到點的距離為.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】根據向量的加法及向量數量積的運算性質求解.【詳解】如圖,在正方體中,,故答案為:114、3【解析】根據雙曲線方程求出,再根據雙曲線的定義可知,即可得到、,再由正弦定理計算可得;【詳解】解:因為雙曲線為,所以、,因為點P是雙曲線左支上一點且,所以,所以,,在中,由正弦定理可得,所以;故答案為:15、,.【解析】由的遞推關系,討論、求及,注意驗證是否滿足通項,即可寫出的通項公式.【詳解】當時,,當且時,,而,即也滿足,∴,.故答案為:,.16、0【解析】由函數,又由,則,根據二次函數的性質,即可求解函數的最大值,得到答案.【詳解】由函數,因為,所以,當時,則,所以.【點睛】本題主要考查了余弦函數的性質,以及二次函數的圖象與性質,其中解答中根據余弦函數,轉化為關于的二次函數,利用二次函數的圖象與性質是解答的關鍵,著重考查了轉化思想,以及推理與計算能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)由,構造是以為首項,為公比等比數列,利用等比數列的通項公式可得結果;(2)由(1)得,利用裂項相消可求.【小問1詳解】由,得,又,所以數列是首項為2,公比為2的等比數列,則,即,故數列的通項公式為.【小問2詳解】由(1)知,,所以.因為,所以,所以數列的前n項和.18、(1)或(2)【解析】(1)由直線被圓C截得的弦長為,求得圓心到直線的距離為,分直線的斜率不存在和斜率存在兩種情況討論,結合點到直線的距離公式,列出方程,即可求解.(2)設點,,根據線段的中點為,求得,結合在圓上,代入即可求解.【小問1詳解】解:由題意,圓,可得圓心,半徑,因為直線被圓C截得的弦長為,則圓心到直線的距離為,當直線的斜率不存在時,此時直線的方程為,滿足題意;當直線的斜率存在時,設直線的方程為,即,則,解得,即,綜上可得,所求直線的方程為或.【小問2詳解】解:設點,因為點,線段的中點為,可得,解得,又因為在圓上,可得,即,即點的軌跡方程為.19、(1);(2).【解析】(1)分別求出命題,均為真命題時的取值范圍,再求交集即可.(2)利用集合間的關系求解即可.【詳解】實數滿足不等式,即命題實數滿足不等式,即(1)當時,命題,均為真命題,則且則實數的取值范圍為;(2)若是的充分不必要條件,則是的真子集則且解得故的取值范圍為.【點睛】判斷充分條件與必要條件應注意:首先弄清條件和結論分別是什么,然后直接依據定義、定理、性質嘗試.對于帶有否定性的命題或比較難判斷的命題,除借助集合思想化抽象為直觀外,還可利用原命題和逆否命題、逆命題和否命題的等價性,轉化為判斷它的等價命題;對于范圍問題也可以轉化為包含關系來處理.20、(1)(2)證明見解析【解析】(1)設點,由即所以化簡即可得到答案.(2)設,,設直線l的方程為:與(1)中W的軌跡方程聯立,得出韋達定理,求出,同理設直線的方程為:,得出,再根據從而可證明結論.【小問1詳解】設點,因為,所以,因為,所以所以所以所以所以C的方程為:【小問2詳解】設,,設直線l的方程為:,則由得:所以,,所以所以設直線的方程為:,則同理可得因所以即,即,即解得,即所以為定值.21、(1);(2).【解析】(1)利用基本初等函數的導數公式及求導法則直接計算作答.(2)求出,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論