2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題含解析_第1頁
2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題含解析_第2頁
2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題含解析_第3頁
2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題含解析_第4頁
2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆重慶市云陽縣鳳鳴中學高一數學第一學期期末考試試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.下列函數中,最小正周期為π2A.y=cosxC.y=cos2x2.已知集合,,全集,則()A. B.C. D.I3.函數,則函數()A.在上是增函數 B.在上是減函數C.在是增函數 D.在是減函數4.將函數的圖像向左、向下各平移1個單位長度,得到的函數圖像,則()A. B.C. D.5.已知函數則=()A. B.9C. D.6.已知,則的大小關系是()A. B.C. D.7.如果AB>0,BC>0,那么直線Ax-By-C=0不經過的象限是A.第一象限 B.第二象限C.第三象限 D.第四象限8.下列關系中,正確的是A. B.C. D.9.直線l:ax+y﹣3a=0與曲線y有兩個公共點,則實數a的取值范圍是A.[,] B.(0,)C.[0,) D.(,0)10.已知函數,則函數()A.有最小值 B.有最大值C.有最大值 D.沒有最值二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,且,則的最小值為___________.12.如圖,已知矩形ABCD,AB=1,BC=a,PA⊥平面ABCD,若在BC上只有一個點Q滿足PQ⊥QD,則a的值等于________13.設奇函數對任意的,,有,且,則的解集___________.14.某商廈去年1月份的營業額為100萬元.如果該商廈營業額的月增長率為1%,則商廈的月營業額首次突破110萬元是在去年的___________月份.15.計算_____________.16.已知,函數在上單調遞增,則的取值范圍是__三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.函數的定義域為,定義域為.(1)求;(2)若,求實數的取值范圍.18.計算求值:(1)計算:;(2).19.在平行四邊形中,過點作的垂線交的延長線于點,.連結交于點,如圖1,將沿折起,使得點到達點的位置.如圖2.證明:直線平面若為的中點,為的中點,且平面平面求三棱錐的體積.20.已知向量,,且,滿足關系.(1)求向量,的數量積用k表示的解析式;(2)求向量與夾角的最大值.21.參加勞動是學生成長的必要途徑,每個孩子都要抓住日常生活中的勞動實踐機會,自覺參與、自己動手,堅持不懈進行勞動,掌握必要的勞動技能.在勞動中接受鍛煉、磨煉意志,培養正確的勞動價值觀和良好的勞動品質.大家知道,用清水洗衣服,其上殘留的污漬用水越多,洗掉的污漬量也越多,但是還有污漬殘留在衣服上,在實驗基礎上現作如下假定:用單位的水清洗1次后,衣服上殘留的污漬與本次清洗前殘留的污漬之比為函數(1)①試解釋與的實際意義;②寫出函數應該滿足的條件或具有的性質(寫出至少2條,不需要證明);(2)現有單位量的水,可以清洗一次,也可以把水平均分成2份后清洗兩次.哪種方案清洗后衣服上殘留的污漬比較少?請說明理由

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】利用三角函數的周期性求解.【詳解】A.y=cosx周期為T=2πB.y=tanx的周期為C.y=cos2x的周期為D.y=tan2x的周期為故選:D2、B【解析】根據并集、補集的概念,計算即可得答案.【詳解】由題意得,所以故選:B3、C【解析】根據基本函數單調性直接求解.【詳解】因為,所以函數在是增函數,故選:C4、B【解析】根據函數的圖象變換的原則,結合對數的運算性質,準確運算,即可求解.【詳解】由題意,將函數的圖像向左、向下各平移1個單位長度,可得.故選:B.5、A【解析】根據函數的解析式求解即可.【詳解】,所以,故選A6、B【解析】利用指數函數和對數函數的性質,三角函數的性質比較大小即可【詳解】∵,,∴;∵,∴;∵,∴,∴,又,,∴,∴綜上可知故選:B7、B【解析】斜率為,截距,故不過第二象限.考點:直線方程.8、C【解析】利用元素與集合的關系依次對選項進行判斷即可【詳解】選項A:,錯誤;選項B,,錯誤;選項C,,正確;選項D,與是元素與集合的關系,應該滿足,故錯誤;故選C【點睛】本題考查元素與集合的關系,屬于基礎題9、C【解析】根據直線的點斜式方程可得直線過定點,曲線表示以為圓心,1為半徑的半圓,作出圖形,利用數形結合思想求出兩個極限位置的斜率,即可得解.【詳解】直線,即斜率為且過定點,曲線為以為圓心,1為半徑的半圓,如圖所示,當直線與半圓相切,為切點時(此時直線的傾斜角為鈍角),圓心到直線的距離,,解得,當直線過原點時斜率,即,則直線與半圓有兩個公共點時,實數的取值范圍為:[0,),故選:C【點睛】本題主要考查圓的方程與性質,直線與圓的位置關系,考查了數形結合思想的應用,屬于中檔題.10、B【解析】換元法后用基本不等式進行求解.【詳解】令,則,因為,,故,當且僅當,即時等號成立,故函數有最大值,由對勾函數的性質可得函數,即有最小值.故選:B二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】由已知湊配出積為定值,然后由基本不等式求得最小值【詳解】因為,,且,所以,當且僅當,即時等號成立故答案為:12、2【解析】證明平面得到,故與以為直徑的圓相切,計算半徑得到答案.詳解】PA⊥平面ABCD,平面ABCD,故,PQ⊥QD,,故平面,平面,故,在BC上只有一個點Q滿足PQ⊥QD,即與以為直徑的圓相切,,故間的距離為半徑,即為1,故.故答案為:213、【解析】可根據函數的單調性和奇偶性,結合和,分析出的正負情況,求解.【詳解】對任意,,有故在上為減函數,由奇函數的對稱性可知在上為減函數,則則,,,;,;,;,.故解集為:故答案為:【點睛】正確理解奇函數和偶函數的定義,必須把握好兩個問題:(1)定義域關于原點對稱是函數f(x)為奇函數或偶函數的必要非充分條件;(2)f(-x)=-f(x)或f(-x)=f(x)是定義域上的恒等式.奇函數的圖象關于原點對稱,偶函數的圖象關于y軸對稱,反之也成立.利用這一性質可簡化一些函數圖象的畫法,也可以利用它去判斷函數的奇偶性14、11【解析】根據指數函數模型求解【詳解】設第月首次突破110萬元,則,,,因此11月份首次突破110萬元故答案為:1115、【解析】將所給式子通分后進行三角變換可得結果【詳解】由題意得故答案為:【點睛】易錯點睛:本題考查三角恒等化簡,本題的關鍵是通分后用正弦的差角公式,在由化成時注意角的順序,這是容易出錯的地方,考查運算能力,屬于中檔題.16、【解析】本題已知函數的單調區間,求參數的取值范圍,難度中等.由,得,又函數在上單調遞增,所以,即,注意到,即,所以取,得考點:函數的圖象與性質【方法點晴】已知函數為單調遞增函數,可得變量的取值范圍,其必包含區間,從而可得參數的取值范圍,本題還需挖掘參數的隱含范圍,即函數在上單調遞增,可知,因此,綜合題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)求函數的定義域,就是求使得根式有意義的自變量的取值范圍,然后求解分式不等式即可;(2)因為,所以一定有,從而得到,要保證,由它們的端點值的大小列式進行計算,即可求得結果.【詳解】(1)要使函數有意義,則需,即,解得或,所以;(2)由題意可知,因為,所以,由,可求得集合,若,則有或,解得或,所以實數的取值范圍是.【點睛】該題考查的是有關函數的定義域的求解,以及根據集合之間的包含關系確定參數的取值范圍的問題,屬于簡單題目.18、(1)102(2)【解析】根據指數冪運算律和對數運算律,計算即得解【小問1詳解】【小問2詳解】19、(1)見解析;(2)【解析】(1)在平面圖形內找到,則在立體圖形中,可證面.(2)解法一:根據平面平面,得到平面,得到到平面的距離,根據平面圖形求出底面平的面積,求得三棱錐的體積.解法二:找到三棱錐的體積與四棱錐的體積之間的關系比值關系,先求四棱錐的體積,從而得到三棱錐的體積.【詳解】證明:如圖1,中,所以.所以也是直角三角形,,如圖題2,所以平面.解法一:平面平面,且平面平面,平面,平面.取的中點為,連結則平面,即為三棱錐的高..解法二:平面平面,且平面平面,平面,平面.為的中點,三棱錐的高等于.為的中點,的面積是四邊形的面積的,三棱錐的體積是四棱錐的體積的三棱錐的體積為.【點睛】本題考查線面垂直的判定,面面垂直的性質,以及三棱錐體積的計算,都是對基礎內容的考查,屬于簡單題.20、(1),(2)【解析】(1)化簡即得;(2)設與的夾角為,求出,再求函數的最值得解.【詳解】(1)由已知.,,,.(2)設與的夾角為,則,,當即時,取到最小值為.又,與夾角的最大值為.【點睛】本題主要考查向量的數量積運算,考查向量夾角的計算和函數最值的求解,意在考查學生對這些知識的理解掌握水平和計算能力.21、(1)表示沒有用水清洗時,衣服上的污漬不變;表示用1個單位的水清洗時,可清除衣服上殘留的污漬的;定義域為,值域為,在區間內單調遞減.(2)當時,,此時兩種清洗方法效果相同;當時,,此時把單位的水平均分成份后,清洗兩次,殘留的污漬較少;當時,,此時用單位的水清洗一次后殘留的污漬較少.【解析】(1)①根據函數的實際意義說明即可;②由實際意義可得出函數的定義域,值域,單調性.(2)求出兩種清洗方法污漬的殘留量,并進行比較即可.【小問1詳解】①表示沒有用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論