2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷_第1頁
2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷_第2頁
2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷_第3頁
2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷_第4頁
2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖北省黃岡市浠水實驗高中高三畢業班下學期摸底聯考數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.國務院發布《關于進一步調整優化結構、提高教育經費使用效益的意見》中提出,要優先落實教育投入.某研究機構統計了年至年國家財政性教育經費投入情況及其在中的占比數據,并將其繪制成下表,由下表可知下列敘述錯誤的是()A.隨著文化教育重視程度的不斷提高,國在財政性教育經費的支出持續增長B.年以來,國家財政性教育經費的支出占比例持續年保持在以上C.從年至年,中國的總值最少增加萬億D.從年到年,國家財政性教育經費的支出增長最多的年份是年2.某人造地球衛星的運行軌道是以地心為一個焦點的橢圓,其軌道的離心率為,設地球半徑為,該衛星近地點離地面的距離為,則該衛星遠地點離地面的距離為()A. B.C. D.3.已知,若,則等于()A.3 B.4 C.5 D.64.已知數列滿足,則()A. B. C. D.5.如圖是函數在區間上的圖象,為了得到這個函數的圖象,只需將的圖象上的所有的點()A.向左平移個長度單位,再把所得各點的橫坐標變為原來的,縱坐標不變B.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變C.向左平移個長度單位,再把所得各點的橫坐標變為原來的,縱坐標不變D.向左平移個長度單位,再把所得各點的橫坐標變為原來的2倍,縱坐標不變6.一個幾何體的三視圖如圖所示,正視圖、側視圖和俯視圖都是由一個邊長為的正方形及正方形內一段圓弧組成,則這個幾何體的表面積是()A. B. C. D.7.已知角的終邊經過點,則A. B.C. D.8.已知數列的前n項和為,,且對于任意,滿足,則()A. B. C. D.9.記其中表示不大于x的最大整數,若方程在在有7個不同的實數根,則實數k的取值范圍()A. B. C. D.10.已知,,,是球的球面上四個不同的點,若,且平面平面,則球的表面積為()A. B. C. D.11.執行如圖所示的程序框圖若輸入,則輸出的的值為()A. B. C. D.12.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在區間(-∞,1)上遞增,則實數a的取值范圍是____14.設復數滿足,其中是虛數單位,若是的共軛復數,則____________.15.中,角的對邊分別為,且成等差數列,若,,則的面積為__________.16.已知函數,若函數恰有4個零點,則實數的取值范圍是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足,,其前n項和為.(1)通過計算,,,猜想并證明數列的通項公式;(2)設數列滿足,,,若數列是單調遞減數列,求常數t的取值范圍.18.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.19.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.20.(12分)如圖,在四面體中,.(1)求證:平面平面;(2)若,二面角為,求異面直線與所成角的余弦值.21.(12分)已知函數(1)解不等式;(2)若函數,若對于任意的,都存在,使得成立,求實數的取值范圍.22.(10分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

觀察圖表,判斷四個選項是否正確.【詳解】由表易知、、項均正確,年中國為萬億元,年中國為萬億元,則從年至年,中國的總值大約增加萬億,故C項錯誤.【點睛】本題考查統計圖表,正確認識圖表是解題基礎.2、A【解析】

由題意畫出圖形,結合橢圓的定義,結合橢圓的離心率,求出橢圓的長半軸a,半焦距c,即可確定該衛星遠地點離地面的距離.【詳解】橢圓的離心率:,(c為半焦距;a為長半軸),設衛星近地點,遠地點離地面距離分別為r,n,如圖:則所以,,故選:A【點睛】本題主要考查了橢圓的離心率的求法,注意半焦距與長半軸的求法,是解題的關鍵,屬于中檔題.3、C【解析】

先求出,再由,利用向量數量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.4、C【解析】

利用的前項和求出數列的通項公式,可計算出,然后利用裂項法可求出的值.【詳解】.當時,;當時,由,可得,兩式相減,可得,故,因為也適合上式,所以.依題意,,故.故選:C.【點睛】本題考查利用求,同時也考查了裂項求和法,考查計算能力,屬于中等題.5、A【解析】

由函數的最大值求出,根據周期求出,由五點畫法中的點坐標求出,進而求出的解析式,與對比結合坐標變換關系,即可求出結論.【詳解】由圖可知,,又,,又,,,為了得到這個函數的圖象,只需將的圖象上的所有向左平移個長度單位,得到的圖象,再將的圖象上各點的橫坐標變為原來的(縱坐標不變)即可.故選:A【點睛】本題考查函數的圖象求解析式,考查函數圖象間的變換關系,屬于中檔題.6、C【解析】

畫出直觀圖,由球的表面積公式求解即可【詳解】這個幾何體的直觀圖如圖所示,它是由一個正方體中挖掉個球而形成的,所以它的表面積為.故選:C【點睛】本題考查三視圖以及幾何體的表面積的計算,考查空間想象能力和運算求解能力.7、D【解析】因為角的終邊經過點,所以,則,即.故選D.8、D【解析】

利用數列的遞推關系式判斷求解數列的通項公式,然后求解數列的和,判斷選項的正誤即可.【詳解】當時,.所以數列從第2項起為等差數列,,所以,,.,,.故選:.【點睛】本題考查數列的遞推關系式的應用、數列求和以及數列的通項公式的求法,考查轉化思想以及計算能力,是中檔題.9、D【解析】

做出函數的圖象,問題轉化為函數的圖象在有7個交點,而函數在上有3個交點,則在上有4個不同的交點,數形結合即可求解.【詳解】作出函數的圖象如圖所示,由圖可知方程在上有3個不同的實數根,則在上有4個不同的實數根,當直線經過時,;當直線經過時,,可知當時,直線與的圖象在上有4個交點,即方程,在上有4個不同的實數根.故選:D.【點睛】本題考查方程根的個數求參數,利用函數零點和方程之間的關系轉化為兩個函數的交點是解題的關鍵,運用數形結合是解決函數零點問題的基本思想,屬于中檔題.10、A【解析】

由題意畫出圖形,求出多面體外接球的半徑,代入表面積公式得答案.【詳解】如圖,取BC中點G,連接AG,DG,則,,分別取與的外心E,F,分別過E,F作平面ABC與平面DBC的垂線,相交于O,則O為四面體的球心,由,得正方形OEGF的邊長為,則,四面體的外接球的半徑,球O的表面積為.故選A.【點睛】本題考查多面體外接球表面積的求法,考查空間想象能力與思維能力,是中檔題.11、C【解析】

由程序語言依次計算,直到時輸出即可【詳解】程序的運行過程為當n=2時,時,,此時輸出.故選:C【點睛】本題考查由程序框圖計算輸出結果,屬于基礎題12、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當直線過點時,目標函數取得最大值,最大值為3;當直線過點時,目標函數取得最小值,最小值為3a;由條件得,所以,故選D.考點:線性規劃.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

根據復合函數單調性同增異減,結合二次函數的性質、對數型函數的定義域列不等式組,解不等式求得的取值范圍.【詳解】由二次函數的性質和復合函數的單調性可得解得.故答案為:【點睛】本小題主要考查根據對數型復合函數的單調性求參數的取值范圍,屬于基礎題.14、【解析】

由于,則.15、.【解析】

由A,B,C成等差數列得出B=60°,利用正弦定理得進而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點睛】本題考查了等差數列的性質,三角形的面積公式,考查正弦定理的應用,屬于基礎題.16、【解析】

函數恰有4個零點,等價于函數與函數的圖象有四個不同的交點,畫出函數圖象,利用數形結合思想進行求解即可.【詳解】函數恰有4個零點,等價于函數與函數的圖象有四個不同的交點,畫出函數圖象如下圖所示:由圖象可知:實數的取值范圍是.故答案為:【點睛】本題考查了已知函數零點個數求參數取值范圍問題,考查了數形結合思想和轉化思想.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),證明見解析;(2)【解析】

(1)首先利用賦值法求出的值,進一步利用定義求出數列的通項公式;(2)首先利用疊乘法求出數列的通項公式,進一步利用數列的單調性和基本不等式的應用求出參數的范圍.【詳解】(1)數列滿足,,其前項和為.所以,,則,,,所以猜想得:.證明:由于,所以,則:(常數),所以數列是首項為1,公差為的等差數列.所以,整理得.(2)數列滿足,,所以,則,所以.則,所以,所以,整理得,由于,所以,即.【點睛】本題考查的知識要點:數列的通項公式的求法及應用,疊乘法的應用,函數的單調性在數列中的應用,基本不等式的應用,主要考察學生的運算能力和轉換能力,屬于中檔題型.18、(1)(為參數),;(2)【解析】分析:(1)直線的參數方程為(為參數),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數方程為(為參數).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數方程為(為參數)代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數方程有多種形式,其中一種為(為直線的傾斜角,是參數),這樣的參數方程中的參數有明確的幾何意義,它表示之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方程變形盡量產生以便轉化.19、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數)代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數)代入曲線的方程得:.所以.所以.20、(1)證明見解析(2)【解析】

(1)取中點連接,得,可得,可證,可得,進而平面,即可證明結論;(2)設分別為邊的中點,連,可得,,可得(或補角)是異面直線與所成的角,,可得,為二面角的平面角,即,設,求解,即可得出結論.【詳解】(1)證明:取中點連接,由則,則,故,,平面,又平面,故平面平面(2)解法一:設分別為邊的中點,則,(或補角)是異面直線與所成的角.設為邊的中點,則,由知.又由(1)有平面,平面,所以為二面角的平面角,,設則在中,從而在中,,又,從而在中,因,,因此,異面直線與所成角的余弦值為.解法二:過點作交于點由(1)易知兩兩垂直,以為原點,射線分別為軸,軸,軸的正半軸,建立空間直角坐標系.不妨設,由,易知點的坐標分別為則顯然向量是平面的法向量已知二面角為,設,則設平面的法向量為,則令,則由由上式整理得,解之得(舍)或,因此,異面直線與所成角的余弦值為.【點睛】本題考查空間點、線、面位置關系,證明平面與平面垂直,考查空間角,涉及到二面角、異面直線所成的角,做出空間角對應的平面角是解題的關鍵,或用空間向量法求角,意在考查直觀想象、邏輯推理、數學計算能力,屬于中檔題.21、(1)(2)【解析】

(1)將表示為分段函數的形式,由此求得不等式的解集.(2)利用絕對值三角不等式,求得的取值范圍,根據分段函數解析式,求得的取值范圍,結合題意列不等式,解不等式求得的取值范圍.【詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論