安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題含解析_第1頁
安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題含解析_第2頁
安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題含解析_第3頁
安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題含解析_第4頁
安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省A10聯盟2025屆高一數學第一學期期末監測模擬試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.函數f(x)=的零點所在的一個區間是A.(-2,-1) B.(-1,0)C.(0,1) D.(1,2)2.若,且,則的值是A. B.C. D.3.設是兩條不同的直線,是三個不同的平面,給出下列四個命題:①若,,則;②若,,,則;③若,,則;④若,,則.其中正確命題的序號是A.① B.②和③C.③和④ D.①和④4.函數的零點所在的區間是()A.(0,1) B.(1,2)C.(2,3) D.(3,4)5.一個球的內接正方體的表面積為54,則球的表面積為()A. B.C. D.6.已知,且,則的最小值為A. B.C. D.7.明朝數學家程大位在他的著作《算法統宗》中寫了一首計算秋千繩索長度的詞《西江月》:“平地秋千未起,踏板一尺離地,送行兩步恰竿齊,五尺板高離地……”某教師根據這首詞設計一題:如圖,已知,,則弧的長()A. B.C. D.8.為了得到函數的圖像,只需將函數的圖像上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度9.若函數y=|x|(x-1)的圖象與直線y=2(x-t)有且只有2個公共點,則實數t的所有取值之和為()A.2 B.C.1 D.10.已知,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本大題共6小題,每小題5分,共30分。11.函數,且)的圖象恒過定點,則點的坐標為___________;若點在函數的圖象上,其中,,則的最大值為___________.12.函數的定義域為________13.已知,則的值是________,的值是________.14.已知,求________15.若,則____16.已知,若是的充分不必要條件,則的取值范圍為______三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,已知點,是以為底邊的等腰三角形,點在直線:上(1)求邊上的高所在直線的方程;(2)求的面積18.已知函數,(1)試比較與的大小關系,并給出證明;(2)解方程:;(3)求函數,(是實數)的最小值19.已知函數(1)求的最小正周期及最大值;(2)求在區間上的值域20.已知函數fx=logax(a>0且(1)求a的值;(2)求滿足0<ffx<121.在單位圓中,已知第二象限角的終邊與單位圓的交點為,若.(1)求、、的值;(2)分別求、、的值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】因為函數f(x)=2+3x在其定義域內是遞增的,那么根據f(-1)=,f(0)=1+0=1>0,那么函數的零點存在性定理可知,函數的零點的區間為(-1,0),選B考點:本試題主要考查了函數零點的問題的運用點評:解決該試題的關鍵是利用零點存在性定理,根據區間端點值的乘積小于零,得到函數的零點的區間2、A【解析】由,則,考點:同角間基本關系式3、A【解析】結合直線與平面垂直的性質和平行判定以及平面與平面的位置關系,逐項分析,即可.【詳解】①選項成立,結合直線與平面垂直的性質,即可;②選項,m可能屬于,故錯誤;③選項,m,n可能異面,故錯誤;④選項,該兩平面可能相交,故錯誤,故選A.【點睛】本題考查了直線與平面垂直的性質,考查了平面與平面的位置關系,難度中等.4、B【解析】先求得函數的單調性,利用函數零點存在性定理,即可得解.【詳解】解:因為函數均為上的單調遞減函數,所以函數在上單調遞減,因為,,所以函數的零點所在的區間是.故選:B5、A【解析】球的內接正方體的對角線就是球的直徑,正方體的棱長為a,球的半徑為r,則,求出正方體棱長,再求球半徑即可【詳解】解:設正方體的棱長為a,球的半徑為r,則,所以又因所以所以故選:A【點睛】考查球內接正方體棱長和球半徑的關系以及球表面積的求法,基礎題.6、C【解析】運用乘1法,可得由x+y=(x+1)+y﹣1=[(x+1)+y]?()﹣1,化簡整理再由基本不等式即可得到最小值【詳解】由x+y=(x+1)+y﹣1=[(x+1)+y]?1﹣1=[(x+1)+y]?2()﹣1=2(21≥3+47當且僅當x,y=4取得最小值7故選C【點睛】本題考查基本不等式的運用:求最值,注意乘1法和滿足的條件:一正二定三等,考查運算能力,屬于中檔題7、C【解析】求出長后可得,再由弧長公式計算可得【詳解】由題意,解得,所以,,所以弧的長為故選:C8、B【解析】利用誘導公式,的圖象變換規律,得出結論【詳解】解:為了得到函數的圖象,只需將函數圖象上所有的點向右平移個單位長度,故選:B9、C【解析】可直接根據題意轉化為方程有兩個根,然后利用分類討論思想去掉絕對值再利用判別式即可求得各個t的值【詳解】由題意得方程有兩個不等實根,當方程有兩個非負根時,令時,則方程為,整理得,解得;當時,,解得,故不滿足滿足題意;當方程有一個正跟一個負根時,當時,,,解得,當時,方程為,,解得;當方程有兩個負根時,令,則方程為,解得,當,,解得,不滿足題意綜上,t的取值為和,因此t的所有取值之和為1,故選C【點睛】本題是在二次函數的基礎上加了絕對值,所以首先需解決絕對值,關于去絕對值直接用分類討論思想即可;關于二次函數根的分布需結合對稱軸,判別式,進而判斷,必要時可結合進行判斷10、B【解析】先由,得到,再由充分條件與必要條件的概念,即可得出結果.【詳解】由解得,所以由“”能推出“”,反之,不能推出;因此“”是“”必要不充分條件.故選:B.【點睛】本題主要考查命題的必要不充分條件的判定,熟記充分條件與必要條件的概念即可,屬于常考題型.二、填空題:本大題共6小題,每小題5分,共30分。11、①②.##0.5【解析】根據對數函數圖象恒過定點求出點A坐標;代入一次函數式,借助均值不等式求解作答.【詳解】函數,且)中,由得:,則點;依題意,,而,,則,當且僅當2m=n=1時取“=”,即,所以點的坐標為,的最大值為.故答案為:;12、【解析】根據偶次方根被開方數為非負數、對數真數大于零列不等式組,解不等式組求得函數的定義域.【詳解】依題意,解得,故函數的定義域為.故答案為.【點睛】本小題主要考查具體函數定義域的求法,屬于基礎題.13、①.②.【解析】將化為可得值,通過兩角和的正切公式可得的值.【詳解】因為,所以;,故答案為:,.14、【解析】由條件利用同角三角函數的基本關系求得和的值,再利用兩角和差的三角公式求得的值【詳解】∵,∴,,,∴,∴故答案為:15、##0.25【解析】運用同角三角函數商數關系式,把弦化切代入即可求解.【詳解】,故答案為:.16、【解析】根據不等式的解法求出的等價條件,結合充分不必要條件的定義建立不等式關系即可【詳解】由得得或,由得或,得或,若是的充分不必要條件,則即得,又,則,即實數的取值范圍是,故填:【點睛】本題主要考查充分條件和必要條件的應用,求出不等式的等價條件結合充分條件和必要條件的定義進行轉化是解決本題的關鍵,為基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由題意,求得直線的斜率,從而得到,利用直線的點斜式方程,即可求解直線的方程;(2)由,求得,利用兩點間的距離公式和三角形的面積公式,即可求得三角形的面積.試題解析:(Ⅰ)由題意可知,為的中點,∴,且,∴所在直線方程為,即.(Ⅱ)由得∴∴,∴∴18、(1)(2)或.(3)【解析】(1)與作差,配方后即可得;(2)原方程化為,設,可得,進而可得結果;(3)令,則,函數可化為,利用二次函數的性質分情況討論,分別求出兩段函數的最小值,比較大小后可得各種情況下函數,(是實數)的最小值.試題解析:(1)因為,所以(2)由,得,令,則,故原方程可化為,解得,或(舍去),則,即,解得或,所以或(3)令,則,函數可化為①若,當時,,對稱軸,此時;當時,,對稱軸,此時,故,②若,當,,對稱軸,此時;當時,,對稱軸,此時,故,③若,當時,,對稱軸,此時;當時,,對稱軸,此時,故,;④若,當時,,對稱軸,此時;當時,,對稱軸,此時,則時,,時,,故,⑤若,當時,,對稱軸,此時;當時,,對稱軸,此時,因為時,,故,綜述:【方法點睛】本題主要考查指數函數的性質分段函數的解析式和性質、分類討論思想及方程的根與系數的關系.屬于難題.分類討論思想解決高中數學問題的一種重要思想方法,是中學數學四種重要的數學思想之一,尤其在解決含參數問題發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是將題設條件研究透,這樣才能快速找準突破點.充分利用分類討論思想方法能夠使問題條理清晰,進而順利解答,希望同學們能夠熟練掌握并應用與解題當中.19、(1),;(2).【解析】(1)利用周期公式及正弦函數的性質即得;(2)由,求出的范圍,再利用正弦函數的性質即可求解.【小問1詳解】∵函數,∴最小正周期,∵,,∴當時,.【小問2詳解】當時,,∴當時,即時,,當時,即時,,∴在區間上的值域為.20、(1)2;(2)2,4.【解析】(1)由函數fx的單調性和最值

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論