2025屆河南省周口市項城三高高二上數學期末學業質量監測試題含解析_第1頁
2025屆河南省周口市項城三高高二上數學期末學業質量監測試題含解析_第2頁
2025屆河南省周口市項城三高高二上數學期末學業質量監測試題含解析_第3頁
2025屆河南省周口市項城三高高二上數學期末學業質量監測試題含解析_第4頁
2025屆河南省周口市項城三高高二上數學期末學業質量監測試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆河南省周口市項城三高高二上數學期末學業質量監測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.經過點且與直線垂直的直線方程為()A. B.C. D.2.在四棱錐中,底面是正方形,為的中點,若,則()A. B.C. D.3.一動圓與圓外切,而與圓內切,那么動圓的圓心的軌跡是()A.橢圓 B.雙曲線C.拋物線 D.雙曲線的一支4.在正方體ABCD-A1B1C1D1中,棱長為a,M,N分別為A1B和AC上的點,A1M=AN=,則MN與平面BB1C1C的位置關系是()A.相交 B.平行C.垂直 D.不能確定5.函數的圖象如圖所示,則函數的圖象可能是A. B.C. D.6.在正方體中,分別是線段的中點,則點到直線的距離是()A. B.C. D.7.在數列中,若,,則()A.16 B.32C.64 D.1288.已知函數在處取得極值,則的極大值為()A. B.C. D.9.已知函數在處取得極小值,則()A. B.C. D.10.在一次拋硬幣的試驗中,某同學用一枚質地均勻的硬幣做了100次試驗,發現正面朝上出現了48次,那么出現正面朝上的頻率和概率分別為()A.0.48,0.48 B.0.5,0.5C.0.48,0.5 D.0.5,0.4811.已知雙曲線C:-=1的焦距為10,點P(2,1)在C的漸近線上,則C的方程為A.-=1 B.-=1C.-=1 D.-=112.若x,y滿足約束條件,則的最大值為()A.2 B.3C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.設是橢圓上一點,分別是橢圓的左、右焦點,若,則的大小_____.14.已知實數,滿足,則的最大值為______.15.古希臘數學家阿波羅尼斯發現:平面內到兩個定點,的距離之比為定值的點的軌跡是圓.人們將這個圓稱為阿波羅尼斯圓,簡稱阿氏圓.已知點,,動點滿足,記動點的軌跡為曲線,給出下列四個結論:①曲線方程為;②曲線上存在點,使得到點的距離為;③曲線上存在點,使得到點的距離大于到直線的距離;④曲線上存在點,使得到點與點的距離之和為.其中所有正確結論的序號是___________.16.已知數列的前n項和為,則______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓:()的離心率為,橢圓上一點到左右兩個焦點、的距離之和是4.(1)求橢圓的方程;(2)已知過的直線與橢圓交于、兩點,且兩點與左右頂點不重合,若,求四邊形面積的最大值.18.(12分)已知橢圓的離心率為,右焦點為,斜率為1的直線與橢圓交于兩點,以為底邊作等腰三角形,頂點為.(1)求橢圓的方程;(2)求的面積.19.(12分)從橢圓上一點P向x軸作垂線,垂足恰為左焦點,A是橢圓C與x軸正半軸的交點,直線AP的斜率為,若橢圓長軸長為8(1)求橢圓C的方程;(2)點Q為橢圓上任意一點,求面積的最大值20.(12分)已知拋物線的焦點到準線的距離為2.(1)求C的方程:(2)過C上一動點P作圓兩條切線,切點分別為A,B,求四邊形PAMB面積的最小值.21.(12分)著名的“康托爾三分集”是由德國數學家康托爾構造的,是人類理性思維的產物,其操作過程如下:將閉區間均分為三段,去掉中間的區間段記為第一次操作;再將剩下的兩個閉區間,分別均分為三段,并各自去掉中間的區間段,記為第二次操作;…,如此這樣,每次在上一次操作的基礎上,將剩下的各個區間分別均分為三段,同樣各自去掉中間的區間段.操作過程不斷地進行下去,以至無窮.每次操作后剩下的閉區間構成的集合即是“康托爾三分集”.例如第一次操作后的“康托爾三分集”為.(1)求第二次操作后的“康托爾三分集”;(2)定義的區間長度為,記第n次操作后剩余的各區間長度和為,求;(3)記n次操作后“康托爾三分集”的區間長度總和為,若使不大于原來的,求n的最小值.(參考數據:,)22.(10分)已知橢圓的下焦點為、上焦點為,其離心率.過焦點且與x軸不垂直的直線l交橢圓于A、B兩點(1)求實數m的值;(2)求△ABO(O為原點)面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據點斜式求得正確答案.【詳解】直線的斜率為,經過點且與直線垂直的直線方程為,即.故選:A2、C【解析】由為的中點,根據向量的運算法則,可得,即可求解.【詳解】由底面是正方形,E為的中點,且,根據向量的運算法則,可得.故選:C.3、A【解析】依據定義法去求動圓的圓心的軌跡即可解決.【詳解】設動圓的半徑為r,又圓半徑為1,圓半徑為8,則,,可得,又則動圓的圓心的軌跡是以為焦點長軸長為9的橢圓.故選:A4、B【解析】建立空間直角坐標系,求得平面BB1C1C的法向量和直線MN的方向向量,利用兩向量垂直,得到線面平行.【詳解】建立如圖所示的空間直角坐標系,由圖可知平面BB1C1C的法向量.∵A1M=AN=,∴M,N,∴.∵,∴MN∥平面BB1C1C,故選:B.【點睛】該題考查的是有關立體幾何的問題,涉及到的知識點有利于空間向量判斷線面平行,屬于簡單題目.5、D【解析】原函數先減再增,再減再增,且位于增區間內,因此選D【名師點睛】本題主要考查導數圖象與原函數圖象的關系:若導函數圖象與軸的交點為,且圖象在兩側附近連續分布于軸上下方,則為原函數單調性的拐點,運用導數知識來討論函數單調性時,由導函數的正負,得出原函數的單調區間6、A【解析】以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系,然后,列出計算公式進行求解即可【詳解】如圖,以為坐標原點,分別以的方向為軸的正方向,建立空間直角坐標系.因為,所以,所以,則點到直線的距離故選:A7、C【解析】根據題意,為等比數列,用基本量求解即可.【詳解】因為,故是首項為2,公比為2的等比數列,故.故選:C8、B【解析】首先求出函數的導函數,依題意可得,即可求出參數的值,從而得到函數解析式,再根據導函數得到函數單調性,即可求出函數的極值點,從而求出函數的極大值;【詳解】解:因為,所以,依題意可得,即,解得,所以定義域為,且,令,解得或,令解得,即在和上單調遞增,在上單調遞減,即在處取得極大值,在處取得極小值,所以;故選:B9、A【解析】由導數與極值與最值的關系,列式求實數的值.【詳解】由條件可知,,,解得:,,檢驗,時,當,得或,函數的單調遞增區間是和,當,得,所以函數的單調遞減區間是,所以當時,函數取得極小值,滿足條件.所以.故選:A10、C【解析】頻率跟實驗次數有關,概率是一種現象的固有屬性,與實驗次數無關,即可得到答案.【詳解】頻率跟實驗次數有關,出現正面朝上的頻率為實驗中出現正面朝上的次數除以總試驗次數,故為.概率是拋硬幣試驗的固有屬性,與實驗次數無關,拋硬幣正面朝上的概率為.故選:C11、A【解析】由題意得,雙曲線的焦距為,即,又雙曲線的漸近線方程為,點在的漸近線上,所以,聯立方程組可得,所以雙曲線的方程為考點:雙曲線的標準方程及簡單的幾何性質12、C【解析】作出不等式組對應的可行域,再利用數形結合分析求解.【詳解】解:作出不等式組對應的可行域為如圖所示的陰影部分區域,由得,它表示斜率為縱截距為的直線系,當直線平移到點時,縱截距最大,最大.聯立直線方程得得.所以.故選:C二、填空題:本題共4小題,每小題5分,共20分。13、【解析】,,利用橢圓的定義、結合余弦定理、已知條件,可得,解得,從而可得結果【詳解】橢圓,可得,設,,可得,化簡可得:,,故答案為【點睛】本題主要考查橢圓的定義以及余弦定理的應用,屬于中檔題.對余弦定理一定要熟記兩種形式:(1);(2),同時還要熟練掌握運用兩種形式的條件.另外,在解與三角形、三角函數有關的問題時,還需要記住等特殊角的三角函數值,以便在解題中直接應用.14、【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,聯立方程組得到最優解的坐標,代入目標函數得答案.【詳解】由約束條件作出可行域如圖所示,化目標函數為,由圖可知,當直線過點時,直線在y軸上的截距最大,z最大,聯立方程組,解得點,則取得最大值為.故答案為:【點睛】本題考查的是線性規劃問題,解決線性規劃問題的實質是把代數問題幾何化,即數形結合的思想,需要注意的是:一,準確無誤作出可行域;二,畫目標函數所對應直線時,要注意讓其斜率與約束條件中的直線的斜率比較;三,一般情況下,目標函數的最值會在可行域的端點或邊界上取得.15、①④【解析】設,根據滿足,利用兩點間距離公式化簡整理,即可判斷①是否正確;由①可知,圓上的點到的距離的范圍為,進而可判斷②是否正確;設,根據題意可知,再根據在曲線上,可得,由此即可判斷③是否正確;由橢圓的的定義,可知在橢圓上,再根據橢圓與曲線的位置關系,即可判斷④是否正確.【詳解】設,因為滿足,所以,整理可得:,即,所以①正確;對于②中,由①可知,點在圓的外部,因為到圓心的距離,半徑為,所以圓上的點到的距離的范圍為,而,所以②不正確;對于③中,假設存在,使得到點的距離大于到直線的距離,又,到直線的距離,所以,化簡可得,又,所以,即,故假設不成立,故③不正確;對于④中,假設存在這樣的點,使得到點與點的距離之和為,則在以點與點為焦點,實軸長為的橢圓上,即在橢圓上,易知橢圓與曲線有交點,故曲線上存在點,使得到點與點的距離之和為;所以④正確.故答案為:①④.16、【解析】先通過裂項相消求出,再代入計算即可.【詳解】,則,故.故答案為:3.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)6.【解析】(1)本小題根據題意先求,,,再求橢圓的標準方程;(2)本小題先設過的直線的方程,再根據題意表示出四邊形的面積,最后求最值即可.【詳解】解:(1)∵橢圓上一點到左右兩個焦點、的距離之和是4,∴即,∵,∴,又∵,∴.∴橢圓的標準方程為;(2)設點、的坐標為,,因為直線過點,所以可設直線方程為,聯立方程,消去可得:,化簡整理得,其中,所以,,因為,所以四邊形是平行四邊形,設平面四邊形的面積為,則,設,則(),所以,因為,所以,,所以四邊形面積的最大值為6.【點睛】本題考查橢圓的標準方程,相交弦等問題,是偏難題.18、(1)(2)【解析】(1)根據橢圓的簡單幾何性質知,又,寫出橢圓的方程;(2)先斜截式設出直線,聯立方程組,根據直線與圓錐曲線的位置關系,可得出中點為的坐標,再根據△為等腰三角形知,從而得的斜率為,求出,寫出:,并計算,再根據點到直線距離公式求高,即可計算出面積【詳解】(1)由已知得,,解得,又,所以橢圓的方程為(2)設直線的方程為,由得,①設、的坐標分別為,(),中點為,則,,因為是等腰△的底邊,所以所以的斜率為,解得,此時方程①為解得,,所以,,所以,此時,點到直線:距離,所以△的面積考點:1、橢圓的簡單幾何性質;2、直線和橢圓的位置關系;3、橢圓的標準方程;4、點到直線的距離.【思路點晴】本題主要考查的是橢圓的方程,橢圓的簡單幾何性質,直線與橢圓的位置關系,點到直線的距離,屬于難題.解決本類問題時,注意使用橢圓的幾何性質,求得橢圓的標準方程;求三角形的面積需要求出底和高,在求解過程中要充分利用三角形是等腰三角形,進而知道定點與弦中點的連線垂直,這是解決問題的關鍵19、(1)(2)18【解析】(1)易得,,進而有,再結合已知即可求解;(2)由(1)易得直線AP的方程為,,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,聯立即可得與AP距離比較遠的切線方程,從而即可求解.【小問1詳解】解:由題意,將代入橢圓方程,得,又∵,∴,化簡得,解得,又,,所以,∴,∴橢圓的方程為;【小問2詳解】解:由(1)知,直線AP的方程為,即,設與直線AP平行的直線方程為,由題意,當該直線與橢圓相切時,記與AP距離比較遠的直線與橢圓的切點為Q,此時的面積取得最大值,將代入橢圓方程,化簡可得,由,即,解得,所以與AP距離比較遠的切線方程,因為與之間的距離,又,所以的面積的最大值為20、(1)(2)【解析】(1)根據拋物線方程求出交點坐標和準線方程,求出p即可;(2)設,利用兩點坐標求距離公式求出,根據四邊形PAMB的面積得到關于的二次函數,結合二次函數的性質即可得出結果.【小問1詳解】因為C的焦點為,準線為,由題意得,即,因此.【小問2詳解】圓M的圓心為,半徑為1.由條件可知,,且,于是.設,則.當時等號成立,所以四邊形PAMB面積的最小值為.21、(1)(2)(3)【解析】(1)根據“康托爾三分集”的定義,即可求得第二次操作后的“康托爾三分集”;(2)根據“康

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論