




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東大埔華僑二中2025屆高二上數學期末統考試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.把紅、黑、藍、白4張紙牌隨機地分發給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”的關系是()A.既不互斥也不對立 B.互斥又對立C.互斥但不對立 D.對立2.若球的半徑為,一個截面圓的面積是,則球心到截面圓心的距離是()A. B.C. D.3.已知圓柱的表面積為定值,當圓柱的容積最大時,圓柱的高的值為()A.1 B.C. D.24.知點分別為圓上的動.點,為軸上一點,則的最小值()A. B.C. D.5.若復數的模為2,則的最大值為()A. B.C. D.6.圓的圓心到直線的距離為2,則()A. B.C. D.27.已知等差數列的前n項和為,且,,若(,且),則i的取值集合是()A. B.C. D.8.點到直線的距離為A.1 B.2C.3 D.49.已知函數,則()A.3 B.C. D.10.設集合,集合,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.若函數在區間內存在單調遞增區間,則實數的取值范圍是()A. B.C. D.12.中國剪紙是一種用剪刀或刻刀在紙上剪刻花紋,用于裝點生活或配合其他民俗活動的民間藝術.如圖所示的圓形剪紙中,正六邊形的所有頂點都在該圓上,若在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知點P是拋物線上的一個動點,則點P到點M(0,2)的距離與點P到該拋物線準線的距離之和的最小值為______________14.已知直線,拋物線上一動點到直線l的距離為d,則的最小值是______15.已知直線,,為拋物線上一點,則到這兩條直線距離之和的最小值為___________.16.點在以,為焦點的橢圓上運動,則的重心的軌跡方程是___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知等差數列的前項和為,且,(1)求數列的通項公式;(2)若數列滿足,求數列的前項和18.(12分)已知函數,(1)求的單調區間;(2)當時,求證:在上恒成立19.(12分)設數列滿足(1)求的通項公式;(2)記數列的前項和為,是否存在實數,使得對任意恒成立.20.(12分)已知等差數列滿足,前7項和為(Ⅰ)求的通項公式(Ⅱ)設數列滿足,求的前項和.21.(12分)已知圓C:(1)若點,求過點的圓的切線方程;(2)若點為圓的弦的中點,求直線的方程22.(10分)排一張有6個歌唱節目和5個舞蹈節目的演出節目單.(1)任何兩個舞蹈節目不相鄰的排法有多少種?(2)歌唱節目與舞蹈節目間隔排列的方法有多少種?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】根據互斥事件、對立事件的定義可得答案.【詳解】把紅、黑、藍、白4張紙牌隨機地分發給甲、乙、丙、丁4人,每人分得1張,事件“甲分得紅牌”與事件“乙分得紅牌”不能同時發生,但能同時不發生,所以它們的關系是互斥但不對立.故選:C.2、C【解析】由題意可解出截面圓的半徑,然后利用勾股定理求解球心與截面圓圓心的距離【詳解】由截面圓的面積為可知,截面圓的半徑為,則球心到截面圓心的距離為故選:C【點睛】解答本題的關鍵點在于,球心與截面圓圓心的連線垂直于截面3、B【解析】設圓柱的底面半徑為,則圓柱底,圓柱側,則可得,則圓柱的體積為,利用導數求出最大值,確定值.【詳解】設圓柱的底面半徑為,則圓柱底,圓柱側,∴,∴,則圓柱的體積,∴,由得,由得,∴當時,取極大值,也是最大值,即故選:B【點睛】本題主要考查了圓柱表面積和體積的計算,考查了導數的實際應用,考查了學生的應用意識.4、B【解析】求出圓關于軸的對稱圓的圓心坐標,以及半徑,然后求解圓與圓的圓心距減去兩個圓的半徑和,即可求出的最小值.【詳解】圓關于軸的對稱圓的圓心坐標,半徑為1,圓的圓心坐標為,半徑為1,∴若與關于x軸對稱,則,即,當三點不共線時,當三點共線時,所以同理(當且僅當時取得等號)所以當三點共線時,當三點不共線時,所以∴的最小值為圓與圓的圓心距減去兩個圓的半徑和,∴.故選:B.5、A【解析】由題意得,表示以為圓心,2為半徑的圓,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,然后求出切線的斜率即可【詳解】因為復數的模為2,所以,所以其表示以為圓心,2為半徑的圓,如圖所示,表示過原點和圓上的點的直線的斜率,由圖可知,當直線與圓相切時,取得最值,設切線方程為,則,解得,所以的最大值為,故選:A6、B【解析】配方求出圓心坐標,再由點到直線距離公式計算【詳解】圓的標準方程是,圓心為,∴,解得故選:B.【點睛】本題考查圓的標準方程,考查點到直線距離公式,屬于基礎題7、C【解析】首先求出等差數列的首先和公差,然后寫出數列即可觀察到滿足的i的取值集合.【詳解】設公差為d,由題知,,解得,,所以數列為,故.故選:C.【點睛】本題主要考查了等差數列的基本量的求解,屬于基礎題.8、B【解析】直接利用點到直線的距離公式得到答案.【詳解】,答案為B【點睛】本題考查了點到直線的距離公式,屬于簡單題.9、B【解析】由導數運算法則求出導發函數,然后可得導數值【詳解】由題意,所以故選:B10、A【解析】解不等式求集合,然后判斷兩個集合的關系【詳解】,解得,故,可化為或,解得或,故,故“”是“”的充分不必要條件故選:A11、D【解析】求出函數的導數,問題轉化為在有解,進而求函數的最值,即可求出的范圍.【詳解】∵,∴,若在區間內存在單調遞增區間,則有解,故,令,則在單調遞增,,故.故選:D.12、D【解析】設圓的半徑,求出圓的面積與正六邊形的面積,再根據幾何概型的概率公式計算可得;【詳解】解:設圓的半徑,則,則,所以,所以在該圓形剪紙的內部投擲一點,則該點恰好落在正六邊形內部的概率;故選:D二、填空題:本題共4小題,每小題5分,共20分。13、【解析】由拋物線的定義得:,所以,當三點共線時,最小可得答案.【詳解】如圖所示:,由拋物線的定義得:,所以,由圖象知:當三點共線時,最小,.故答案為:.14、##【解析】作直線l,拋物線準線且交y軸于A點,根據拋物線定義有,進而判斷目標式最小時的位置關系,結合點線距離公式求最小值.【詳解】如下圖示:若直線l,拋物線準線且交y軸于A點,則,,由拋物線定義知:,則,所以,要使目標式最小,即最小,當共線時,又,此時.故答案為:.15、【解析】過作,垂足分別為,由直線為拋物線的準線,轉化,當三點共線時,取得最小值【詳解】過作,垂足分別為拋物線的焦點為直線為拋物線的準線由拋物線的定義,故,當三點共線時,取得最小值故最小值為點到直線的距離:故答案為:16、【解析】設出點和三角形的重心,利用重心坐標公式得到點和三角形的重心坐標的關系,,代入橢圓方程即可求得軌跡方程,再利用,,三點不共線得到.【詳解】設,,由,得,即,,因為為的重心,所以,,即,,代入,得,即,因為,,三點不共線,所以,則的重心的軌跡方程是.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】(1)設等差數列的公差為,根據已知條件可得出關于、的方程組,解出這兩個量的值,即可求得數列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:設等差數列公差為,,【小問2詳解】解:,.18、(1)單調減區間為,單調增區間為;(2)證明見解析.【解析】(1)求得,根據其正負,即可判斷函數單調性從而求得函數單調區間;(2)根據題意,轉化目標不等式為,分別構造函數,,利用導數研究其單調性,即可證明.【小問1詳解】因為,故可得,又為單調增函數,令,解得,故當時,;當時,,故的單調減區間為,單調增區間為.【小問2詳解】當時,,要證,即證,又,則只需證,即證,令,,當時,,單調遞增,當時,,單調遞減,故當時,取得最大值;令,,又為單調增函數,且時,,當時,,單調遞減,當時,,單調遞增,故當時,取得最小值.則,且當時,同時取得最小值和最大值,故,即,也即時恒成立.【點睛】本題考察利用導數求函數的單調區間,以及利用導數研究恒成立問題;處理本題的關鍵是合理轉化目標式,屬中檔題.19、(1)(2)存在【解析】(1)利用“退作差”法求得的通項公式.(2)利用裂項求和法求得,由此求得.【小問1詳解】依題意①,當時,.當時,②,①-②得,,時,上式也符合.所以.【小問2詳解】.所以.故存在實數,使得對任意恒成立.20、(1)(2).【解析】(1)根據等差數列的求和公式可得,得,然后由已知可得公差,進而求出通項;(2)先明確=,為等差乘等比型通項故只需用錯位相減法即可求得結論.解析:(Ⅰ)由,得因為所以(Ⅱ)21、(1)或(2)【解析】(1)求出圓的圓心與半徑,分過點的直線的斜率不存和存在兩種情況,利用圓心到直線距離等于半徑,即可求出切線方程;(2)根據圓心與弦中點的連線垂直線,可求出直線的斜率,進而求出結果.【小問1詳解】解:由題意知圓心的坐標為,半徑,當過點的直線的斜率不存在時,方程為由圓心到直線的距離知,此時,直線與圓相切當過點的直線的斜率存在時,設方程為,即.由題意知,解得,∴方程為故過點的圓的切線方程為
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際貿易代理基礎知識考核試卷
- 珠寶首飾表面處理技術考核試卷
- 玻璃制品耐候性測試與優化考核試卷
- 稻谷種植農業氣象服務需求與供給考核試卷
- 新材料新技術引領可持續發展的新方向考核試卷
- 果蔬汁飲料的企業文化與品牌建設考核試卷
- 紡織企業成本分析與控制考核試卷
- 勞務派遣企業招聘渠道分析與優化考核試卷
- 濟南大學《模特經紀管理》2023-2024學年第二學期期末試卷
- 江西服裝學院《嬰幼兒護理與急救》2023-2024學年第二學期期末試卷
- 2025-2030產業用紡織品行業市場發展分析及發展趨勢與投資管理策略研究報告
- 建筑工程安全知識課件
- 鋼材三方采購合同范本
- 貿易安全培訓管理制度
- 全民營養周知識講座課件
- 2025年鄭州電力職業技術學院單招綜合素質考試題庫及答案1套
- 門牌安裝施工方案
- 螺栓緊固標準規范
- 社區時政考試試題及答案
- 人教五四 六年級 下冊 語文 第五單元《中國有能力解決好吃飯問題 第一課時》課件
- MOOC 創業基礎-暨南大學 中國大學慕課答案
評論
0/150
提交評論