




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆云南省永仁縣一中數學高二上期末學業水平測試模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.“”是“”的()A.充分不必要條件 B.必要不充分條件C充分必要條件 D.既不充分也不必要條件2.已知等比數列中,,,則首項()A. B.C. D.03.拋物線的焦點坐標是A. B.C. D.4.若定義在R上的函數滿足,則不等式的解集為()A. B.C. D.5.若直線與圓相交于、兩點,且(其中為原點),則的值為()A. B.C. D.6.設是數列的前項和,已知,則數列()A.是等比數列,但不是等差數列 B.是等差數列,但不是等比數列C.是等比數列,也是等差數列 D.既不是等差數列,也不是等比數列7.已知圓與拋物線的準線相切,則實數p的值為()A.2 B.6C.3或8 D.2或68.已知直線與平行,則系數()A. B.C. D.9.連續拋擲一枚均勻硬幣3次,事件“至少2次出現正面”的對立事件是()A.只有2次出現反面 B.至少2次出現正面C.有2次或3次出現正面 D.有2次或3次出現反面10.兩個圓和的位置是關系是()A.相離 B.外切C.相交 D.內含11.若,,則下列各式中正確的是()A. B.C. D.12.命題“存在,使得”的否定為()A.存在, B.對任意,C.對任意, D.對任意,二、填空題:本題共4小題,每小題5分,共20分。13.等差數列中,若,,則______,數列的前n項和為,則______14.已知是定義在上的奇函數,當時,則當時___________.15.已知莖葉圖記錄了甲、乙兩組各名學生在一次英語聽力測試中的成績(單位:分).已知甲組數據的中位數為,乙組數據的平均數為,則的值為__________.甲組乙組16.矩形ABCD中,,在CD邊上任取一點M,則的最大邊是AB的概率為______三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知圓:,定點,A是圓上的一動點,線段的垂直平分線交半徑于P點(1)求P點的軌跡C的方程;(2)設直線過點且與曲線C相交于M,N兩點,不經過點.證明:直線MQ的斜率與直線NQ的斜率之和為定值18.(12分)已知拋物線的焦點F到準線的距離為2(1)求C的方程;(2)已知O為坐標原點,點P在C上,點Q滿足,求直線斜率最大值.19.(12分)已知,C是圓B:(B是圓心)上一動點,線段AC的垂直平分線交BC于點P(1)求動點P的軌跡的方程;(2)設E,F為與x軸的兩交點,Q是直線上動點,直線QE,QF分別交于M,N兩點,求證:直線MN過定點20.(12分)設點,動圓P經過點F且和直線相切,記動圓的圓心P的軌跡為曲線W(1)求曲線W的方程;(2)直線與曲線W交于A、B兩點,其中O為坐標原點,已知點T的坐標為,記直線TA,TB的斜率分別為,,則是否為定值,若是求出,不是說明理由21.(12分)在空間直角坐標系Oxyz中,O為原點,已知點,,,設向量,.(1)求與夾角的余弦值;(2)若與互相垂直,求實數k的值.22.(10分)如圖,在正方體中,E為的中點(Ⅰ)求證:平面;(Ⅱ)求直線與平面所成角的正弦值
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】根據充分條件和必要條件的定義直接判斷即可.【詳解】若,則,即或,推不出;反過來,若,可推出.故“”是“”的充分不必要條件故選:A.2、B【解析】設等比數列的公比為q,根據等比數列的通項公式,列出方程組,即可求得,進而可求得答案.【詳解】設等比數列公比為q,則,解得,所以.故選:B3、D【解析】根據拋物線的焦點坐標為可知,拋物線即的焦點坐標為,故選D.考點:拋物線的標準方程及其幾何性質.4、B【解析】構造函數,根據題意,求得其單調性,利用函數單調性解不等式即可.【詳解】構造函數,則,故在上單調遞減;又,故可得,則,即,解得,故不等式解集為.故選:B.【點睛】本題考察利用導數研究函數單調性,以及利用函數單調性求解不等式,解決本題的關鍵是根據題意構造函數,屬中檔題.5、D【解析】分析出為等腰直角三角形,可得出原點到直線的距離,利用點到直線的距離公式可得出關于的等式,由此可解得的值.【詳解】圓的圓心為原點,由于且,所以,為等腰直角三角形,且圓心到直線的距離為,由點到直線的距離公式可得,解得.故選:D.【點睛】關鍵點點睛:本題考查利用圓周角求參數,解題的關鍵在于求出弦心距,再利用點到直線的距離公式列方程求解參數.6、B【解析】根據與的關系求出通項,然后可知答案.【詳解】當時,,當時,,綜上,的通項公式為,數列為等差數列同理,由等比數列定義可判斷數列不是等比數列.故選:B7、D【解析】由拋物線準線與圓相切,結合拋物線方程,令求切線方程且拋物線準線方程為,即可求參數p.【詳解】圓的標準方程為:,故當時,有或,所以或,得或6故選:D8、B【解析】由直線的平行關系可得,解之可得【詳解】解:直線與直線平行,,解得故選:9、D【解析】根據對立事件的定義選擇【詳解】對立事件是指事件A和事件B必有一件發生,連續拋擲一枚均勻硬幣3次,“至少2次出現正面”即有2次或3次出現正面,對立事件為“有2次或3次出現反面”故選:D10、C【解析】根據圓的方程得出兩圓的圓心和半徑,再得出圓心距離與兩圓的半徑的關系,可得選項.【詳解】圓的圓心為,半徑,的圓心為,半徑,則,所以兩圓的位置是關系是相交,故選:C.【點睛】本題考查兩圓的位置關系,關鍵在于運用判定兩圓的位置關系一般利用幾何法.即比較圓心之間的距離與半徑之和、之差的大小關系,屬于基礎題.11、D【解析】根據題意,結合,,利用不等式的性質可判斷,從而判斷,再利用不等式性質得出正確答案.【詳解】,,,又,,兩邊同乘以負數,可知故選:D12、D【解析】根據特稱命題否定的方法求解,改變量詞,否定結論.【詳解】由題意可知命題“存在,使得”的否定為“對任意,”.故選:D.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.【解析】設等差數列公差為d,根據等差數列的性質即可求通項公式;,采用裂項相消的方法求.【詳解】設等差數列公差為d,,,;∵,∴.故答案為:;.14、【解析】當時,利用及求得函數的解析式.【詳解】當時,,由于函數是奇函數,故.【點睛】本小題主要考查已知函數的奇偶性以及軸一側的解析式,求另一側的解析式,屬于基礎題.15、【解析】根據中位數、平均數的定義,結合莖葉圖進行計算求解即可.【詳解】根據莖葉圖可知:甲組名學生在一次英語聽力測試中的成績分別;乙組名學生在一次英語聽力測試中的成績分別,因為甲組數據的中位數為,所以有,又因為乙組數據的平均數為,所以有,所以,故答案為:16、【解析】先利用勾股定理得出滿足條件的長度,再結合幾何概型的概率公式得出答案.【詳解】設,當時,,;當時,,所以當到的距離都大于時,的最大邊是AB,所以的最大邊是AB的概率為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析,定值為-1.【解析】(1)根據給定條件探求出,再利用橢圓定義即可得軌跡C的方程.(2)由給定條件可得直線的斜率k存在且不為0,寫出直線的方程,再聯立軌跡C的方程,借助韋達定理計算作答.【小問1詳解】圓:的圓心,半徑為8,因A是圓上一動點,線段的垂直平分線交半徑于P點,則,于是得,因此,P點的軌跡C是以,為左右焦點,長軸長2a=8的橢圓,短半軸長b有,所以P點的軌跡C的方程是.【小問2詳解】因直線過點且與曲線C:相交于M,N兩點,則直線的斜率存在且不為0,又不經過點,即直線的斜率不等于-1,設直線的斜率為k,且,直線的方程為:,即,由消去y并整理得:,,即,則有且,設,則,直線MQ的斜率,直線NQ的斜率,,所以直線MQ的斜率與直線NQ的斜率之和為定值.18、(1);(2)最大值為.【解析】(1)由拋物線焦點與準線的距離即可得解;(2)設,由平面向量的知識可得,進而可得,再由斜率公式及基本不等式即可得解.【詳解】(1)拋物線的焦點,準線方程為,由題意,該拋物線焦點到準線的距離為,所以該拋物線的方程為;(2)[方法一]:軌跡方程+基本不等式法設,則,所以,由在拋物線上可得,即,所以直線的斜率,當時,;當時,,當時,因為,此時,當且僅當,即時,等號成立;當時,;綜上,直線斜率的最大值為.[方法二]:【最優解】軌跡方程+數形結合法同方法一得到點Q的軌跡方程為設直線的方程為,則當直線與拋物線相切時,其斜率k取到最值.聯立得,其判別式,解得,所以直線斜率的最大值為[方法三]:軌跡方程+換元求最值法同方法一得點Q的軌跡方程為設直線的斜率為k,則令,則的對稱軸為,所以.故直線斜率的最大值為[方法四]參數+基本不等式法由題可設因,所以于是,所以則直線的斜率為當且僅當,即,時等號成立,所以直線斜率的最大值為【整體點評】方法一根據向量關系,利用代點法求得Q的軌跡方程,得到直線OQ的斜率關于的表達式,然后利用分類討論,結合基本不等式求得最大值;方法二同方法一得到點Q的軌跡方程,然后利用數形結合法,利用判別式求得直線OQ的斜率的最大值,為最優解;方法三同方法一求得Q的軌跡方程,得到直線的斜率k的平方關于的表達式,利用換元方法轉化為二次函數求得最大值,進而得到直線斜率的最大值;方法四利用參數法,由題可設,求得x,y關于的參數表達式,得到直線的斜率關于的表達式,結合使用基本不等式,求得直線斜率的最大值.19、(1)(2)證明見解析【解析】(1)根據,利用橢圓的定義求解;(2)(解法1)設,得到,的方程,與橢圓方程聯立,求得M,N的坐標,寫出直線的方程求解;(解法2)上同解法1,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,然后由求解;(解法3)設,由,,設:,:,其中,與橢圓方程聯立,整理得,由F,M,N三點的橫坐標為該方程的三個根,得到:求解.【小問1詳解】解:由題知,則,由橢圓的定義知動點P的軌跡為以A,B為焦點,6為長軸長的橢圓,所以軌跡的方程為【小問2詳解】(解法1)易知E,F為橢圓的長軸兩端點,不妨設,,設,則,,于是:,:,聯立得,解得或,易得,同理當,即時,:;當時,有,于是:,即綜上直線MN過定點(解法2)上同解法1,得,,由對稱性分析知動直線MN所過定點一定在x軸上,設所求定點為,由C,D,T三點共線,得,即,于是,整理得,由t的任意性知,即,所以直線MN過定點(解法3)設,則,,當時,直線MN即為x軸;當時,因為,所以,則,設:,:,其中,聯立,得,整理得,易知F,M,N三點的橫坐標為該方程的三個根,所以:,由及的任意性,知直線MN過定點20、(1);(2)是定值,.【解析】(1)根據給定條件結合拋物線定義直接求解作答.(2)聯立直線與拋物線方程,借助韋達定理、斜率坐標公式計算作答.【小問1詳解】過點P作直線的垂線,垂足為點N,依題意,,則動點P的軌跡是以為焦點,直線為準線的拋物線,所以曲線W的方程是.【小問2詳解】設,,由消去x并整理得:,則,,因,,則,,因此,所以.【點睛】方法點睛:求定值問題常見的方法:(1)從特殊入手,求出定值,再證明這個值與變量無關;(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值21、(1)(2)【解析】(1)由向量的坐標先求出,,,由向量的夾角公式可得答案.(2)由題意可得,從而求出參數的值【小問1詳解】由題,,,故,,,所以故與夾角余弦值為.【小問2詳解】由與的互相垂直知,,,即22、(Ⅰ)證明見解析;(Ⅱ).【解析】(Ⅰ)證明出四邊形為平行四邊形,可得出,然后利用線面平行的判定定理可證得結論;也可利用空間向量計算證明;(Ⅱ)可以將平面擴展,將線面角轉化,利用幾何方法作出線面角,然后計算;也可以建立空間直角坐標系,利用空間向量計算求解.【詳解】(Ⅰ)[方法一]:幾何法如下圖所示:在正方體中,且,且,且,所以,四邊形為平行四邊形,則,平面,平面,平面;[方法二]:空間向量坐標法以點為坐標原點,、、所在直線分別為、、軸建立如下圖所示的空間直角坐標系,設正方體的棱長為,則、、、,,,設平面的法向量為,由,得,令,則,,則.又∵向量,,又平面,平面;(Ⅱ)[方法一]:幾何法延長到,使得,連接,交于,又∵,∴四邊形為平行四邊形,∴,又∵,∴,所以平面即平面,連接,作,垂足為,連接,∵平面,平面,∴,又∵,∴直線平面,又∵直線平面,∴平面平面,∴在平面中的射影在直線上,∴直線為直線在平面中的射影,∠為直線與平面所成的角,根據直線直線,可知∠為直線與平面所成的角.設正方體的棱長為2,則,,∴,∴,∴,即直線與平面所成角的正弦值為.[方法二]:向量法接續(I)的向量方法,求得平面平面的法向量,又∵,∴,∴直線與平面所成角的正弦值為.[方法三]:幾何法+體積法如圖,設的中點為F,延長,易證三線交于一點P因為,所以直線與平面所成的角,即直線與平面所成的角設正方體的棱長為2,在中,易得,可得由,得,整理
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 國際貿易代理基礎知識考核試卷
- 珠寶首飾表面處理技術考核試卷
- 玻璃制品耐候性測試與優化考核試卷
- 稻谷種植農業氣象服務需求與供給考核試卷
- 新材料新技術引領可持續發展的新方向考核試卷
- 果蔬汁飲料的企業文化與品牌建設考核試卷
- 紡織企業成本分析與控制考核試卷
- 勞務派遣企業招聘渠道分析與優化考核試卷
- 濟南大學《模特經紀管理》2023-2024學年第二學期期末試卷
- 江西服裝學院《嬰幼兒護理與急救》2023-2024學年第二學期期末試卷
- 2025-2030產業用紡織品行業市場發展分析及發展趨勢與投資管理策略研究報告
- 建筑工程安全知識課件
- 鋼材三方采購合同范本
- 貿易安全培訓管理制度
- 全民營養周知識講座課件
- 2025年鄭州電力職業技術學院單招綜合素質考試題庫及答案1套
- 螺栓緊固標準規范
- 社區時政考試試題及答案
- 人教五四 六年級 下冊 語文 第五單元《中國有能力解決好吃飯問題 第一課時》課件
- MOOC 創業基礎-暨南大學 中國大學慕課答案
- (完整word版)扣字詞匯124
評論
0/150
提交評論