




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年福建省福州市長樂區長樂高級中學高三4月模擬訓練數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知平面向量滿足與的夾角為,且,則實數的值為()A. B. C. D.2.已知是第二象限的角,,則()A. B. C. D.3.已知函數,則不等式的解集為()A. B. C. D.4.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業人員中,低收入家庭共有1800戶C.在該市無業人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶5.等差數列的前項和為,若,,則數列的公差為()A.-2 B.2 C.4 D.76.已知函數(),若函數在上有唯一零點,則的值為()A.1 B.或0 C.1或0 D.2或07.已知函數的零點為m,若存在實數n使且,則實數a的取值范圍是()A. B. C. D.8.若集合,則=()A. B. C. D.9.已知f(x)=ax2+bx是定義在[a–1,2a]上的偶函數,那么a+b的值是A. B.C. D.10.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則的值為()A.2 B.3 C.4 D.11.已知函數,若,則等于()A.-3 B.-1 C.3 D.012.集合的真子集的個數為()A.7 B.8 C.31 D.32二、填空題:本題共4小題,每小題5分,共20分。13.已知三棱錐,,是邊長為4的正三角形,,分別是、的中點,為棱上一動點(點除外),,若異面直線與所成的角為,且,則______.14.在中,角、、所對的邊分別為、、,若,,則的取值范圍是_____.15.已知矩形ABCD,AB=4,BC=3,以A,B為焦點,且過C,D兩點的雙曲線的離心率為____________.16.在中,內角的對邊長分別為,已知,且,則_________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.18.(12分)已知函數,.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數在上的最小值;(Ⅲ)若函數,當時,的最大值為,求證:.19.(12分)設函數.(1)當時,求不等式的解集;(2)若不等式恒成立,求實數a的取值范圍.20.(12分)在直角坐標系中,橢圓的左、右焦點分別為,點在橢圓上且軸,直線交軸于點,,橢圓的離心率為.(1)求橢圓的方程;(2)過的直線交橢圓于兩點,且滿足,求的面積.21.(12分)已知為各項均為整數的等差數列,為的前項和,若為和的等比中項,.(1)求數列的通項公式;(2)若,求最大的正整數,使得.22.(10分)在直角坐標系xOy中,以坐標原點為極點,x軸的非負半軸為極軸建立極坐標系;曲線C1的普通方程為(x-1)2+y2=1,曲線C2的參數方程為(θ為參數).(Ⅰ)求曲線C1和C2的極坐標方程:(Ⅱ)設射線θ=(ρ>0)分別與曲線C1和C2相交于A,B兩點,求|AB|的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
由已知可得,結合向量數量積的運算律,建立方程,求解即可.【詳解】依題意得由,得即,解得.故選:.【點睛】本題考查向量的數量積運算,向量垂直的應用,考查計算求解能力,屬于基礎題.2.D【解析】
利用誘導公式和同角三角函數的基本關系求出,再利用二倍角的正弦公式代入求解即可.【詳解】因為,由誘導公式可得,,即,因為,所以,由二倍角的正弦公式可得,,所以.故選:D【點睛】本題考查誘導公式、同角三角函數的基本關系和二倍角的正弦公式;考查運算求解能力和知識的綜合運用能力;屬于中檔題.3.D【解析】
先判斷函數的奇偶性和單調性,得到,且,解不等式得解.【詳解】由題得函數的定義域為.因為,所以為上的偶函數,因為函數都是在上單調遞減.所以函數在上單調遞減.因為,所以,且,解得.故選:D【點睛】本題主要考查函數的奇偶性和單調性的判斷,考查函數的奇偶性和單調性的應用,意在考查學生對這些知識的理解掌握水平.4.D【解析】
根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.5.B【解析】
在等差數列中由等差數列公式與下標和的性質求得,再由等差數列通項公式求得公差.【詳解】在等差數列的前項和為,則則故選:B【點睛】本題考查等差數列中求由已知關系求公差,屬于基礎題.6.C【解析】
求出函數的導函數,當時,只需,即,令,利用導數求其單調區間,即可求出參數的值,當時,根據函數的單調性及零點存在性定理可判斷;【詳解】解:∵(),∴,∴當時,由得,則在上單調遞減,在上單調遞增,所以是極小值,∴只需,即.令,則,∴函數在上單調遞增.∵,∴;當時,,函數在上單調遞減,∵,,函數在上有且只有一個零點,∴的值是1或0.故選:C【點睛】本題考查利用導數研究函數的零點問題,零點存在性定理的應用,屬于中檔題.7.D【解析】
易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區間上有解,化簡可得,借助對號函數即可解得實數a的取值范圍.【詳解】易知函數單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區間上有解,即在區間上有解,而根據“對勾函數”可知函數在區間的值域為,∴.故選D.【點睛】本題考查了函數的零點問題,考查了方程有解問題,分離參數法及構造函數法的應用,考查了利用“對勾函數”求參數取值范圍問題,難度較難.8.C【解析】
求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.9.B【解析】
依照偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x),且定義域關于原點對稱,a﹣1=﹣2a,即可得解.【詳解】根據偶函數的定義域關于原點對稱,且f(x)是定義在[a–1,2a]上的偶函數,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故選B.【點睛】本題考查偶函數的定義,對定義域內的任意實數,f(﹣x)=f(x);奇函數和偶函數的定義域必然關于原點對稱,定義域區間兩個端點互為相反數.10.B【解析】
因為將函數(,)的圖象向右平移個單位長度后得到函數的圖象,可得,結合已知,即可求得答案.【詳解】將函數(,)的圖象向右平移個單位長度后得到函數的圖象,又和的圖象都關于對稱,由,得,,即,又,.故選:B.【點睛】本題主要考查了三角函數圖象平移和根據圖象對稱求參數,解題關鍵是掌握三角函數圖象平移的解法和正弦函數圖象的特征,考查了分析能力和計算能力,屬于基礎題.11.D【解析】分析:因為題設中給出了的值,要求的值,故應考慮兩者之間滿足的關系.詳解:由題設有,故有,所以,從而,故選D.點睛:本題考查函數的表示方法,解題時注意根據問題的條件和求解的結論之間的關系去尋找函數的解析式要滿足的關系.12.A【解析】
計算,再計算真子集個數得到答案.【詳解】,故真子集個數為:.故選:.【點睛】本題考查了集合的真子集個數,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
取的中點,連接,,取的中點,連接,,,直線與所成的角為,計算,,根據余弦定理計算得到答案。【詳解】取的中點,連接,,依題意可得,,所以平面,所以,因為,分別、的中點,所以,因為,所以,所以平面,故,故,故兩兩垂直。取的中點,連接,,,因為,所以直線與所成的角為,設,則,,所以,化簡得,解得,即.故答案為:.【點睛】本題考查了根據異面直線夾角求長度,意在考查學生的計算能力和空間想象能力.14.【解析】
計算出角的取值范圍,結合正弦定理可求得的取值范圍.【詳解】,則,所以,,由正弦定理,.因此,的取值范圍是.故答案為:.【點睛】本題主要考查了正弦定理,正弦函數圖象和性質,考查了轉化思想,屬于基礎題.15.2【解析】
根據為焦點,得;又求得,從而得到離心率.【詳解】為焦點在雙曲線上,則又本題正確結果:【點睛】本題考查利用雙曲線的定義求解雙曲線的離心率問題,屬于基礎題.16.4【解析】∵∴根據正弦定理與余弦定理可得:,即∵∴∵∴故答案為4三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】
(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據抽樣比,求得在三層中抽取的人數;②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數,利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數為小時,則,解得,即一周課外讀書時間的中位數約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數分別為20,50,130,所以從,,三層中抽取的人數分別為2,5,13.②由①知,在,兩層中共抽取7人,設內被抽取的學生分別為,內被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.【點睛】本題主要考查了頻率分布直方表的性質,中位數的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.18.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最小值是(iii)當,即時,在上單調遞減,在上的最小值是(Ⅲ)當時,令,則是單調遞減函數.因為,,所以在上存在,使得,即討論可得在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數,且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數,所以(1)當時,,所以在上單調遞增.所以函數在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,在上單調遞減,在上單調遞增,所以在上的最小值是(iii)當,即時,在上單調遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數,所以所以當時,令,所以是單調遞減函數.因為,,所以在上存在,使得,即所以當時,;當時,即當時,;當時,所以在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以因為,所以所以19.(1)(2)【解析】
(1)利用分段討論法去掉絕對值,結合圖象,從而求得不等式的解集;(2)求出函數的最小值,把問題化為,從而求得的取值范圍.【詳解】(1)當時,則所以不等式的解集為.(2)等價于,而,故等價于,所以或,即或,所以實數a的取值范圍為.【點睛】本題考查含有絕對值的不等式解法、不等式恒成立問題,考查函數與方程思想、轉化與化歸思想、分類討論思想,考查邏輯推理能力、運算求解能力,難度一般.20.(1);(2).【解析】
(1)根據離心率以及,即可列方程求
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年三線城市房屋租賃合同范本參考
- 2025個人地下車位租賃合同
- 2025工商銀行房貸借款合同
- 甲方預付貨款合同協議
- 盈利飯店團購合同協議
- 用刮膩做踢腳線合同協議
- 電梯產品買賣合同協議
- 瓷磚加工建材銷售合同協議
- 環境治理施工合同協議
- 特殊馬達采購合同協議
- (六枝)電廠貯灰場工程施工組織設計
- 鐵路貨運大數據分析應用
- 2023年電氣中級工程師考試題庫
- 3.2工業區位因素及其變化以大疆無人機為例課件高一地理人教版
- 健康教育心肺復蘇知識講座(3篇模板)
- 2024年陜西省中考數學試卷(A卷)附答案
- 五年級上冊體育教案(表格式)
- DL-T5190.1-2022電力建設施工技術規范第1部分:土建結構工程
- 財務預算分析表模板
- (正式版)JTT 1499-2024 公路水運工程臨時用電技術規程
- 中國高清熒光腹腔鏡行業市場現狀分析及競爭格局與投資發展研究報告2024-2034版
評論
0/150
提交評論