




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
PAGE2兩角和與差的三角函數2.1兩角差的余弦函數2.2兩角和與差的正弦、余弦函數考綱定位重難突破1.會用向量的數量積推導出兩角差的余弦公式.2.能利用兩角差的余弦公式導出兩角差的正弦公式,兩角和的正弦、余弦公式.3.會利用公式解決簡潔的化簡求值問題.重點:兩角和與差的正弦、余弦函數.難點:應用公式進行簡潔的恒等變換.授課提示:對應學生用書第59頁[自主梳理]1.兩角和與差的余弦公式Cα-β:cos(α-β)=cos_αcos_β+sin_αsin_β.Cα+β:cos(α+β)=cos_αcos_β-sin_αsin_β.2.兩角和與差的正弦公式Sα+β:sin(α+β)=sin_αcos_β+cos_αsin_β.Sα-β:sin(α-β)=sin_αcos_β-cos_αsin_β.[雙基自測]1.計算sin69°cos9°-cos69°sin9°的結果等于()A.eq\f(1,2) B.eq\f(\r(3),3)C.eq\f(\r(2),2) D.eq\f(\r(3),2)解析:原式=sin(69°-9°)=sin60°=eq\f(\r(3),2).答案:D2.coseq\f(π,12)coseq\f(π,6)-sineq\f(π,12)sineq\f(π,6)=()A.eq\f(1,2) B.eq\f(\r(2),2)C.eq\f(\r(3),2) D.1解析:coseq\f(π,12)coseq\f(π,6)-sineq\f(π,12)sineq\f(π,6)=cos(eq\f(π,12)+eq\f(π,6))=coseq\f(π,4)=eq\f(\r(2),2),故選B.答案:B3.cos15°=________.解析:cos15°=cos(45°-30°)=cos45°cos30°+sin45°sin30°=eq\f(\r(2),2)×eq\f(\r(3),2)+eq\f(\r(2),2)×eq\f(1,2)=eq\f(\r(6)+\r(2),4).答案:eq\f(\r(6)+\r(2),4)授課提示:對應學生用書第60頁探究一給角求值[典例1]求值:(1)sin15°+cos15°;(2)sin119°sin181°-sin91°sin29°.[解析](1)解法一sin15°+cos15°=sin(45°-30°)+cos(45°-30°)=sin45°cos30°-cos45°sin30°+cos45°cos30°+sin45°sin30°=eq\f(\r(2),2)×eq\f(\r(3),2)-eq\f(\r(2),2)×eq\f(1,2)+eq\f(\r(2),2)×eq\f(\r(3),2)+eq\f(\r(2),2)×eq\f(1,2)=eq\f(\r(6),2).解法二sin15°+cos15°=eq\r(2)eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(\r(2),2)·sin15°+\f(\r(2),2)·cos15°))=eq\r(2)sin(15°+45°)=eq\r(2)sin60°=eq\f(\r(6),2).(2)原式=sin(29°+90°)sin(1°+180°)-sin(1°+90°)sin29°=cos29°(-sin1°)-cos1°sin29°=-(sin29°cos1°+cos29°sin1°)=-sin(29°+1°)=-sin30°=-eq\f(1,2).解此類題的關鍵是將非特別角向特別角轉化,充分利用拆角、湊角的技巧轉化為和、差角的正弦、余弦公式的形式,同時留意活用、逆用公式,“大角”利用誘導公式化為“小角”.1.化簡求值.(1)cos(x+27°)cos(x-18°)+sin(x+27°)sin(x-18°);(2)sin14°cos16°+sin76°cos74°;(3)求eq\f(sin47°-sin17°cos30°,cos17°)的值.解析:(1)原式=cos[(x+27°)-(x-18°)]=cos45°=eq\f(\r(2),2).(2)原式=sin14°cos16°+sin(90°-14°)cos(90°-16°)=sin14°cos16°+cos14°sin16°=sin(14°+16°)=sin30°=eq\f(1,2).(3)原式=eq\f(sin30°+17°-sin17°cos30°,cos17°)=eq\f(sin30°cos17°+cos30°sin17°-sin17°cos30°,cos17°)=eq\f(sin30°cos17°,cos17°)=eq\f(1,2).探究二給值求值[典例2]已知eq\f(π,2)<β<α<eq\f(3π,4),cos(α-β)=eq\f(12,13),sin(α+β)=-eq\f(3,5).求sin2α的值.[解析]∵eq\f(π,2)<β<α<eq\f(3π,4),∴0<α-β<eq\f(π,4),π<α+β<eq\f(3π,2).∴sin(α-β)=eq\r(1-cos2α-β)=eq\f(5,13),cos(α+β)=-eq\r(1-sin2α+β)=-eq\f(4,5).∴sin2α=sin[(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β)=eq\f(5,13)×(-eq\f(4,5))+eq\f(12,13)×(-eq\f(3,5))=-eq\f(56,65).1.給值求值問題主要有兩類:一是干脆利用公式綻開后求值.二是變角求值.即將問題中的角表示成已知角的和或差整體求值.在計算中要留意依據角的取值范圍確定三角函數值的符號.2.常見的變角技巧:2α=(α+β)+(α-β),2β=(α+β)-(α-β),α=(α+β)-β,β=(α+β)-α等.2.已知α,β為銳角,且sinα=eq\f(4\r(3),7),cos(α+β)=-eq\f(11,14),求cosβ的值.解析:∵α為銳角,且sinα=eq\f(4\r(3),7),∴cosα=eq\r(1-sin2α)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(\f(4\r(3),7)))2)=eq\f(1,7).又∵α,β為銳角,cos(α+β)=-eq\f(11,14),∴eq\f(π,2)<α+β<π,sin(α+β)=eq\r(1-cos2α+β)=eq\r(1-\b\lc\(\rc\)(\a\vs4\al\co1(-\f(11,14)))2)=eq\f(5\r(3),14).∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(11,14)))×eq\f(1,7)+eq\f(5\r(3),14)×eq\f(4\r(3),7)=eq\f(1,2).探究三給值求角[典例3]已知α∈(0,eq\f(π,2)),β∈(-eq\f(π,2),0)且cos(α-β)=eq\f(3,5),sinβ=-eq\f(\r(2),10),求α.[解析]∵α∈(0,eq\f(π,2)),β∈(-eq\f(π,2),0),∴α-β∈(0,π).∵cos(α-β)=eq\f(3,5),∴sin(α-β)=eq\f(4,5).∵β∈(-eq\f(π,2),0),sinβ=-eq\f(\r(2),10),∴cosβ=eq\f(7\r(2),10).∴sinα=sin[(α-β)+β]=sin(α-β)cosβ+cos(α-β)sinβ=eq\f(4,5)×eq\f(7\r(2),10)+eq\f(3,5)×(eq\f(-\r(2),10))=eq\f(\r(2),2).又∵α∈(0,eq\f(π,2)),∴α=eq\f(π,4).1.解答此類題目的步驟為:第一步,求角的某一個三角函數值;其次步,確定角所在的范圍;第三步,依據角的取值范圍寫出所求的角.至于選取角的哪一個三角函數值,應依據所求角的取值范圍確定,最好是角的取值范圍在該函數的單調區間內.2.選擇求角的三角函數值的方法:若角的取值范圍是(0,eq\f(π,2)),則選正弦函數、余弦函數均可;若角的取值范圍是(-eq\f(π,2),eq\f(π,2)),則選正弦函數;若角的取值范圍是(0,π),則選余弦函數.3.已知函數f(x)=-cos2xcoseq\f(5π,4)+sin2xsineq\f(9π,4).(1)求函數f(x)的最小正周期;(2)若eq\f(π,8)<α<β<eq\f(π,2),f(α)=eq\f(\r(2)+\r(6),4),且f(β)=eq\f(\r(6)-\r(2),4),求角2β-2α的大小.解析:(1)因為f(x)=-cos2xcoseq\f(5π,4)+sin2xsineq\f(9π,4),所以f(x)=cos2xcoseq\f(π,4)+sin2xsineq\f(π,4)=cos(2x-eq\f(π,4)),所以函數f(x)的最小正周期T=eq\f(2π,2)=π.(2)因為f(α)=eq\f(\r(2)+\r(6),4),且f(β)=eq\f(\r(6)-\r(2),4),所以cos(2α-eq\f(π,4))=eq\f(\r(2)+\r(6),4),cos(2β-eq\f(π,4))=eq\f(\r(6)-\r(2),4).又eq\f(π,8)<α<β<eq\f(π,2),所以2α-eq\f(π,4),2β-eq\f(π,4)∈(0,eq\f(3π,4)),所以sin(2α-eq\f(π,4))=eq\r(1-cos22α-\f(π,4))=eq\f(\r(6)-\r(2),4),sin(2β-eq\f(π,4))=eq\r(1-cos22β-\f(π,4))=eq\f(\r(6)+\r(2),4),所以cos(2β-2α)=cos[(2β-eq\f(π,4))-(2α-eq\f(π,4))]=cos(2β-eq\f(π,4))·cos(2α-eq\f(π,4))+sin(2β-eq\f(π,4))sin(2α-eq\f(π,4))=eq\f(\r(6)-\r(2),4)×eq\f(\r(6)+\r(2),4)+eq\f(\r(6)+\r(2),4)×eq\f(\r(6)-\r(2),4)=eq\f(1,2).又eq\f(π,8)<α<β<eq\f(π,2),所以0<2β-2α<eq\f(3π,4),所以2β-2α=eq\f(π,3).整體思想的應用[典例]已知sinαcosβ=-eq\f(1,2),則cosαsinβ的取值范圍是()A.eq\b\lc\[\rc\](\a\vs4\al\co1(-1,\f(1,2))) B.eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(1,2),1))C.eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(3,4),\f(3,4))) D.eq\b\lc\[\rc\](\a\vs4\al\co1(-\f(1,2),\f(1,2)))[解析]設cosαsinβ=t,由sinαcosβ+cosαsinβ=-eq\f(1,2)+t,得sin(α+β)=-eq\f(1,2)+t;由sinαcosβ-cosαsinβ=-eq\f(1,2)-t,得sin(α-β)=-eq\f(1,2)-t.聯立eq\b\lc\{\rc\(\a\vs4\al\co1(sinα+β=-\f(1,2)+t,,sinα-β=-\f(1,2)-t,))得eq\b\lc\{\rc\(\a\vs4\al\co1(\b\lc\|\rc
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年護士臨床技能測試試題及答案
- 精準備考2025年文化概論試題及答案
- 提升記憶力的學習策略執業醫師考試試題及答案
- 行政管理中中華文化的核心價值試題及答案
- 中國文化概論與環境保護的關系試題及答案
- 藥品管理法對藥師考試的影響試題及答案
- 行政管理2025年研究方法試題及答案
- 2025年自考行政管理社會服務創新試題答案
- 正確認識執業藥師的考試試題及答案
- 2025年執業藥師的綜合素質培養試題及答案
- T∕ZZB 2733-2022 貫流式蒸汽發生器
- 戰略管理教學ppt課件(完整版)
- 艾滋病感染孕產婦所生兒童艾滋病早期診斷與抗體檢測流程圖
- 統籌監管金融基礎設施工作方案
- 云南鋰電池項目可行性研究報告
- 博物館學概論:第十講 數字博物館
- 危險化學品企業安全標準化規范課件
- 客戶退貨處理流程圖
- 中國民主同盟入盟申請表(樣表)
- 畢業設計(論文)-軸向柱塞泵設計(含全套CAD圖紙)
- 公安機關通用告知書模板
評論
0/150
提交評論