北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題含解析_第1頁
北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題含解析_第2頁
北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題含解析_第3頁
北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題含解析_第4頁
北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

北京市北京二中教育集團2025屆數(shù)學高二上期末監(jiān)測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.三等分角是“古希臘三大幾何問題”之一,數(shù)學家帕普斯巧妙地利用圓弧和雙曲線解決了這個問題.如圖,在圓D中,為其一條弦,,C,O是弦的兩個三等分點,以A為左焦點,B,C為頂點作雙曲線T.設(shè)雙曲線T與弧的交點為E,則.若T的方程為,則圓D的半徑為()A. B.1C.2 D.2.橢圓的左、右焦點分別為,過焦點的傾斜角為直線交橢圓于兩點,弦長,若三角形的內(nèi)切圓的面積為,則橢圓的離心率為()A. B.C. D.3.過點且與直線平行的直線方程是()A. B.C. D.4.已知函數(shù)為偶函數(shù),且當時,,則不等式的解集為()A. B.C. D.5.下列關(guān)于函數(shù)及其圖象的說法正確的是()A.B.最小正周期為C.函數(shù)圖象的對稱中心為點D.函數(shù)圖象的對稱軸方程為6.考試停課復習期間,小王同學計劃將一天中的7節(jié)課全部用來復習4門不同的考試科目,每門科目復習1或2節(jié)課,則不同的復習安排方法有()種A.360 B.630C.2520 D.151207.已知焦點在軸上的雙曲線的一條漸近線方程為,則該雙曲線的離心率為()A. B.C.2 D.8.設(shè)實系數(shù)一元二次方程在復數(shù)集C內(nèi)的根為、,則由,可得.類比上述方法:設(shè)實系數(shù)一元三次方程在復數(shù)集C內(nèi)的根為,則的值為A.﹣2 B.0C.2 D.49.如圖,我市某地一拱橋垂直軸截面是拋物線,已知水利人員在某個時刻測得水面寬,則此時刻拱橋的最高點到水面的距離為()A. B.C. D.10.若復數(shù)滿足,則復平面內(nèi)表示的點位于()A.第一象限 B.第二象限C.第三象限 D.第四象限11.經(jīng)過點作圓的弦,使點為弦的中點,則弦所在直線的方程為A. B.C. D.12.盤子里有肉餡、素餡和豆沙餡的包子共個,從中隨機取出個,若是肉餡包子的概率為,不是豆沙餡包子的概率為,則素餡包子的個數(shù)為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.二項式的展開式中,項的系數(shù)為__________.14.容積為V圓柱形密封金屬飲料罐,它的高與底面半徑比值為___________時用料最省.15.如圖將自然數(shù),…按到箭頭所指方向排列,并依次在,…等處的位置拐彎.如圖作為第一次拐彎,則第33次拐彎的數(shù)是___________,超過2021的第一個拐彎數(shù)是____________16.已知等比數(shù)列滿足,則_________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓F:經(jīng)過點且離心率為,直線和是分別過橢圓F的左、右焦點的兩條動直線,它們與橢圓分別相交于點A、B和C、D,O為坐標原點,直線AB和直線CD相交于M.記直線的斜率分別為,且(1)求橢圓F的標準方程(2)是否存在定點P,Q,使得為定值.若存在,請求出P、Q的坐標,若不存在,請說明理由18.(12分)已知橢圓點(1)若橢圓的左焦點為,上頂點為,求點到直線的距離;(2)若點是橢圓的弦的中點,求直線的方程19.(12分)求適合下列條件的橢圓的標準方程:(1)經(jīng)過點,;(2)長軸長是短軸長的3倍,且經(jīng)過點20.(12分)已知,2,4,6中的三個數(shù)為等差數(shù)列的前三項,且100不在數(shù)列中,102在數(shù)列中.(1)求數(shù)列的通項;(2)設(shè),求數(shù)列的前項和.21.(12分)如圖,在多面體中,和均為等邊三角形,D是的中點,.(1)證明:;(2)若,求多面體的體積.22.(10分)已知函數(shù).(1)求的單調(diào)遞減區(qū)間;(2)在銳角中,,,分別為角,,的對邊,且滿足,求的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由題設(shè)寫出雙曲線的方程,對比系數(shù),求出即可獲解【詳解】由題知所以雙曲線的方程為又由題設(shè)的方程為,所以,即設(shè)AB的中點為,則由.所以,即圓的半徑為2故選:C2、C【解析】由題可得直線AB的方程,從而可表示出三角形面積,又利用焦點三角形及三角形內(nèi)切圓的性質(zhì),也可表示出三角形面積,則橢圓的離心率即求.【詳解】由題知直線AB的方程為,即,∴到直線AB距離,又三角形的內(nèi)切圓的面積為,則半徑為1,由等面積可得,.故選:C.3、A【解析】由題意設(shè)直線方程為,根據(jù)點在直線上求參數(shù)即可得方程.【詳解】由題設(shè),令直線方程為,所以,可得.所以直線方程為.故選:A.4、D【解析】結(jié)合導數(shù)以及函數(shù)的奇偶性判斷出的單調(diào)性,由此化簡不等式來求得不等式的解集.【詳解】當時,單調(diào)遞增,,所以單調(diào)遞增.因為是偶函數(shù),所以當時,單調(diào)遞減.,,,或.即不等式的解集為.故選:D5、D【解析】化簡,利用正弦型函數(shù)的性質(zhì),依次判斷,即可【詳解】∵∴,A選項錯誤;的最小正周期為,B選項錯誤;令,則,故函數(shù)圖象的對稱中心為點,C選項錯誤;令,則,所以函數(shù)圖象的對稱軸方程為,D選項正確故選:D6、C【解析】,先安排復習節(jié)的科目,然后安排其余科目,由此計算出不同的復習安排方法數(shù).【詳解】第步,門科目選門,安排節(jié)課,方法數(shù)有種,第步,安排其余科目,每門科目節(jié)課,方法數(shù)有種,所以不同的復習安排方法有種.故選:C7、D【解析】由題意,化簡即可得出雙曲線的離心率【詳解】解:由題意,.故選:D8、A【解析】用類比推理得到,再用待定系數(shù)法得到,,再根據(jù)求解.【詳解】,由對應系數(shù)相等得:,.故選:A.【點睛】本題主要考查合情推理以及待定系數(shù)法,還考查了轉(zhuǎn)化化歸的思想和邏輯推理的能力,屬于中檔題.9、D【解析】代入計算即可.【詳解】設(shè)B點的坐標為,由拋物線方程得,則此時刻拱橋的最高點到水面的距離為2米.故選:D10、A【解析】根據(jù)復數(shù)的運算法則,求得,結(jié)合復數(shù)的幾何意義,即可求解.【詳解】由題意,復數(shù)滿足,可得,所以復數(shù)在復平面內(nèi)對應的點的坐標為,位于第一象限.故選:A.11、A【解析】由題知為弦AB的中點,可得直線與過圓心和點的直線垂直,可求的斜率,然后用點斜式求出的方程【詳解】由題意知圓的圓心為,,由,得,∴弦所在直線的方程為,整理得.選A.【點睛】本題考查直線與圓的位置關(guān)系,直線的斜率,直線的點斜式方程,屬于基礎(chǔ)題12、C【解析】計算出肉餡包子和豆沙餡包子的個數(shù),即可求得素餡包子的個數(shù).【詳解】由題意可知,肉餡包子的個數(shù)為,從中隨機取出個,不是豆沙餡包子的概率為,則該包子是豆沙餡包子的概率為,所以,豆沙餡包子的個數(shù)為,因此,素餡包子的個數(shù)為.故選:C.二、填空題:本題共4小題,每小題5分,共20分。13、80【解析】利用二項式的通項公式進行求解即可.【詳解】二項式的通項公式為:,令,所以項的系數(shù)為,故答案為:8014、【解析】設(shè)圓柱的底面半徑為,高為,容積為,由,得到,進而求得表面積,結(jié)合不等式,即可求解.【詳解】設(shè)圓柱的底面半徑為,高為,容積為,則,即有,可得圓柱的表面積為,當且僅當時,即時最小,即用料最省,此時,可得.故答案為:.15、①.②.【解析】根據(jù)題意得到拐彎處的數(shù)字與其序數(shù)的關(guān)系,歸納得到當為奇數(shù)為;當為為偶數(shù)為,分別代入,即可求解.【詳解】解:由題意,拐彎處的數(shù)字與其序數(shù)的關(guān)系,如下表:拐彎的序數(shù)012345678拐彎處的數(shù)1235710131721觀察拐彎處的數(shù)字的規(guī)律:第1個數(shù);第3個數(shù);第5個數(shù);第7個數(shù);,所以當為奇數(shù)為;同理可得:當為為偶數(shù)為;第33次拐彎的數(shù)是,當時,可得,當時,可得,所以超過2021第一個拐彎數(shù)是.故答案為:;.16、84【解析】設(shè)公比為q,求出,再由通項公式代入可得結(jié)論【詳解】設(shè)公比為q,則,解得所以故答案為:84三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)存在點,使得為定值.【解析】(1)設(shè),,,結(jié)合條件即求;(2)由題可設(shè)直線方程,利用韋達定理法可得,再結(jié)合條件可得點的軌跡方程為,然后利用橢圓的定義即得結(jié)論.【小問1詳解】設(shè),,,橢圓方程為:,橢圓過點,,解得t=1,所以橢圓F的方程是【小問2詳解】由題可得焦點的坐標分別為,當直線AB或CD的斜率不存在時,點M的坐標為或,當直線AB和CD的斜率都存在時,設(shè)斜率分別為,點,直線AB為,聯(lián)立,得則,,同理可得,,因為,所以,化簡得由題意,知,所以設(shè)點,則,所以,化簡得,當直線或的斜率不存在時,點M的坐標為或,也滿足此方程所以點在橢圓上,根據(jù)橢圓定義可知,存在定點,使得為定值【點睛】關(guān)鍵點點睛:本題的關(guān)鍵是利用韋達定理法及題設(shè)條件求出點M的軌跡方程,再結(jié)合橢圓的定義,從而問題得到解決.18、(1)(2)【解析】(1)根據(jù)橢圓基本關(guān)系求得,,再利用截距式求得方程,進而求得點到直線的距離.(2)設(shè),利用點差法求解即可.【詳解】(1)橢圓的左焦點是,上頂點,方程為,即,點到直線的距離;(2)設(shè),,,,又,,兩式相減得:,,即直線的斜率為,直線的方程為:,即【點睛】本題主要考查了橢圓中的基本量運算以及點差法的運用,屬于基礎(chǔ)題.19、(1);(2)或.【解析】(1)由已知可得,,且焦點在軸上,進而可得橢圓的標準方程;(2)由已知可得,,此時焦點在軸上,或,,此時焦點在軸上,進而可得橢圓的標準方程;【小問1詳解】解:橢圓經(jīng)過點,,,,,且焦點在軸上,橢圓的標準方程為.【小問2詳解】解:長軸長是短軸長的3倍,且經(jīng)過點,當點在長軸上時,,,此時焦點在軸上,此時橢圓的標準方程為;當點在短軸上時,,,此時焦點在軸上,此時橢圓的標準方程.綜合得橢圓的方程為或.20、(1)(2)【解析】(1)確定數(shù)列為遞增數(shù)列,然后由4個數(shù)確定等差數(shù)列,得通項公式,驗證100和102是否為數(shù)列中的項得結(jié)論;(2)由裂項相消法求和【小問1詳解】首先數(shù)列是遞增數(shù)列,當2,4,6為的前三項時,易知此時,100,102都是該數(shù)列中的項,不滿足題意當,2,6為的前三項時,易知此時,100不是該數(shù)列中的項,102是該數(shù)列中的項,滿足題意所以【小問2詳解】因為所以所以.21、(1)見詳解(1).(2)16【解析】(1)證線面垂直從而證線線垂直.(2)把面體看成兩個錐體,由已知線面垂直得高,并進一步可求錐體底面邊長,從而得解.【小問1詳解】因為,所以共面,連接、,因為和均為等邊三角形,D是的中點,所以,,,所以面平,平面,【小問2詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論