




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教版七7年級下冊數學期末解答題壓軸題含答案一、解答題1.如圖,用兩個面積為的小正方形紙片剪拼成一個大的正方形.(1)大正方形的邊長是________;(2)請你探究是否能將此大正方形紙片沿著邊的方向裁出一個面積為的長方形紙片,使它的長寬之比為,若能,求出這個長方形紙片的長和寬,若不能,請說明理由.2.如圖1,用兩個邊長相同的小正方形拼成一個大的正方形.(1)如圖2,若正方形紙片的面積為1,則此正方形的對角線AC的長為dm.(2)如圖3,若正方形的面積為16,李明同學想沿這塊正方形邊的方向裁出一塊面積為12的長方形紙片,使它的長和寬之比為3∶2,他能裁出嗎?請說明理由.3.已知在的正方形網格中,每個小正方形的邊長為1.(1)計算圖①中正方形的面積與邊長.(2)利用圖②中的正方形網格,作出面積為8的正方形,并在此基礎上建立適當的數軸,在數軸上表示實數和.4.如圖是一塊正方形紙片.(1)如圖1,若正方形紙片的面積為1dm2,則此正方形的對角線AC的長為dm.(2)若一圓的面積與這個正方形的面積都是2πcm2,設圓的周長為C圓,正方形的周長為C正,則C圓C正(填“=”或“<”或“>”號)(3)如圖2,若正方形的面積為16cm2,李明同學想沿這塊正方形邊的方向裁出一塊面積為12cm2的長方形紙片,使它的長和寬之比為3:2,他能裁出嗎?請說明理由?5.如圖,用兩個邊長為15的小正方形拼成一個大的正方形,(1)求大正方形的邊長?(2)若沿此大正方形邊的方向剪出一個長方形,能否使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2?二、解答題6.已知點C在射線OA上.(1)如圖①,CDOE,若∠AOB=90°,∠OCD=120°,求∠BOE的度數;(2)在①中,將射線OE沿射線OB平移得O′E'(如圖②),若∠AOB=α,探究∠OCD與∠BO′E′的關系(用含α的代數式表示)(3)在②中,過點O′作OB的垂線,與∠OCD的平分線交于點P(如圖③),若∠CPO′=90°,探究∠AOB與∠BO′E′的關系.7.(1)(問題)如圖1,若,,.求的度數;(2)(問題遷移)如圖2,,點在的上方,問,,之間有何數量關系?請說明理由;(3)(聯想拓展)如圖3所示,在(2)的條件下,已知,的平分線和的平分線交于點,用含有的式子表示的度數.8.如圖,直線,點是、之間(不在直線,上)的一個動點.(1)如圖1,若與都是銳角,請寫出與,之間的數量關系并說明理由;(2)把直角三角形如圖2擺放,直角頂點在兩條平行線之間,與交于點,與交于點,與交于點,點在線段上,連接,有,求的值;(3)如圖3,若點是下方一點,平分,平分,已知,求的度數.9.汛期即將來臨,防汛指揮部在某水域一危險地帶兩岸各安置了一探照燈,便于夜間查看河水及兩岸河堤的情況.如圖1,燈射出的光束自順時針旋轉至便立即回轉,燈射出的光束自順時針旋轉至便立即回轉,兩燈不停交叉照射巡視.若燈射出的光束轉動的速度是/秒,燈射出的光束轉動的速度是/秒,且、滿足.假定這一帶水域兩岸河堤是平行的,即,且.(1)求、的值;(2)如圖2,兩燈同時轉動,在燈射出的光束到達之前,若兩燈射出的光束交于點,過作交于點,若,求的度數;(3)若燈射線先轉動30秒,燈射出的光束才開始轉動,在燈射出的光束到達之前,燈轉動幾秒,兩燈的光束互相平行?10.如圖,已知直線射線CD,.P是射線EB上一動點,過點P作PQEC交射線CD于點Q,連接CP.作,交直線AB于點F,CG平分.(1)若點P,F,G都在點E的右側,求的度數;(2)若點P,F,G都在點E的右側,,求的度數;(3)在點P的運動過程中,是否存在這樣的情形,使?若存在,求出的度數;若不存在,請說明理由.三、解答題11.(1)光線從空氣中射入水中會產生折射現象,同時光線從水中射入空氣中也會產生折射現象,如圖1,光線a從空氣中射入水中,再從水中射入空氣中,形成光線b,根據光學知識有,請判斷光線a與光線b是否平行,并說明理由.(2)光線照射到鏡面會產生反射現象,由光學知識,入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,如圖2有一口井,已知入射光線與水平線的夾角為,問如何放置平面鏡,可使反射光線b正好垂直照射到井底?(即求與水平線的夾角)(3)如圖3,直線上有兩點A、C,分別引兩條射線、.,,射線、分別繞A點,C點以1度/秒和3度/秒的速度同時順時針轉動,設時間為t,在射線轉動一周的時間內,是否存在某時刻,使得與平行?若存在,求出所有滿足條件的時間t.12.(1)學習了平行線以后,香橙同學想出了過一點畫一條直線的平行線的新方法,她是通過折紙做的,過程如(圖1).①請你仿照以上過程,在圖2中畫出一條直線b,使直線b經過點P,且,要求保留折紙痕跡,畫出所用到的直線,指明結果.無需寫畫法:②在(1)中的步驟(b)中,折紙實際上是在尋找過點P的直線a的線.(2)已知,如圖3,,BE平分,CF平分.求證:(寫出每步的依據).13.已知兩條直線l1,l2,l1∥l2,點A,B在直線l1上,點A在點B的左邊,點C,D在直線l2上,且滿足.(1)如圖①,求證:AD∥BC;(2)點M,N在線段CD上,點M在點N的左邊且滿足,且AN平分∠CAD;(Ⅰ)如圖②,當時,求∠DAM的度數;(Ⅱ)如圖③,當時,求∠ACD的度數.14.如圖1,,在、內有一條折線.(1)求證:;(2)在圖2中,畫的平分線與的平分線,兩條角平分線交于點,請你補全圖形,試探索與之間的關系,并證明你的結論;(3)在(2)的條件下,已知和均為鈍角,點在直線、之間,且滿足,,(其中為常數且),直接寫出與的數量關系.15.如圖所示,已知,點P是射線AM上一動點(與點A不重合),BC、BD分別平分和,分別交射線AM于點C、D,且(1)求的度數.(2)當點P運動時,與之間的數量關系是否隨之發生變化?若不變化,請寫出它們之間的關系,并說明理由;若變化,請寫出變化規律.(3)當點P運動到使時,求的度數.四、解答題16.在△ABC中,∠BAC=90°,點D是BC上一點,將△ABD沿AD翻折后得到△AED,邊AE交BC于點F.(1)如圖①,當AE⊥BC時,寫出圖中所有與∠B相等的角:;所有與∠C相等的角:.(2)若∠C-∠B=50°,∠BAD=x°(0<x≤45).①求∠B的度數;②是否存在這樣的x的值,使得△DEF中有兩個角相等.若存在,并求x的值;若不存在,請說明理由.17.如圖①,將一副直角三角板放在同一條直線AB上,其中∠ONM=30°,∠OCD=45°.(1)將圖①中的三角板OMN沿BA的方向平移至圖②的位置,MN與CD相交于點E,求∠CEN的度數;(2)將圖①中的三角板OMN繞點O按逆時針方向旋轉,使∠BON=30°,如圖③,MN與CD相交于點E,求∠CEN的度數;(3)將圖①中的三角板OMN繞點O按每秒30°的速度按逆時針方向旋轉一周,在旋轉的過程中,在第____________秒時,直線MN恰好與直線CD垂直.(直接寫出結果)18.模型與應用.(模型)(1)如圖①,已知AB∥CD,求證∠1+∠MEN+∠2=360°.(應用)(2)如圖②,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6的度數為.如圖③,已知AB∥CD,則∠1+∠2+∠3+∠4+∠5+∠6+…+∠n的度數為.(3)如圖④,已知AB∥CD,∠AM1M2的角平分線M1O與∠CMnMn-1的角平分線MnO交于點O,若∠M1OMn=m°.在(2)的基礎上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度數.(用含m、n的代數式表示)19.如圖,在中,與的角平分線交于點.(1)若,則;(2)若,則;(3)若,與的角平分線交于點,的平分線與的平分線交于點,,的平分線與的平分線交于點,則.20.已知在中,,點在上,邊在上,在中,邊在直線上,;(1)如圖1,求的度數;(2)如圖2,將沿射線的方向平移,當點在上時,求度數;(3)將在直線上平移,當以為頂點的三角形是直角三角形時,直接寫出度數.【參考答案】一、解答題1.(1)4;(2)不能,理由見解析.【分析】(1)根據已知正方形的面積求出大正方形的邊長即可;(2)先設未知數根據面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再解析:(1)4;(2)不能,理由見解析.【分析】(1)根據已知正方形的面積求出大正方形的邊長即可;(2)先設未知數根據面積=14(cm2)列方程,求出長方形的邊長,將長方形的長與正方形邊長比較大小再判斷即可.【詳解】解:(1)兩個正方形面積之和為:2×8=16(cm2),∴拼成的大正方形的面積=16(cm2),∴大正方形的邊長是4cm;故答案為:4;(2)設長方形紙片的長為2xcm,寬為xcm,則2x?x=14,解得:,2x=2>4,∴不存在長寬之比為且面積為的長方形紙片.【點睛】本題考查了算術平方根,能夠根據題意列出算式是解此題的關鍵.2.(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:解析:(1);(2)不能,理由見解析【分析】(1)由正方形面積,可求得正方形邊長,然后利用勾股定理即可求出對角線長;(2)利用方程思想求出長方形的長邊,然后與正方形邊長比較大小即可.【詳解】解:(1)∵正方形紙片的面積為,∴正方形的邊長,∴.故答案為:.(2)不能;根據題意設長方形的長和寬分別為和.∴長方形面積為:,解得:,∴長方形的長邊為.∵,∴他不能裁出.【點睛】本題考查了算術平方根在長方形和正方形面積中的應用,靈活的進行算術平方根計算及無理數大小比較是解題的關鍵.3.(1)正方形的面積為10,正方形的邊長為;(2)見解析【分析】(1)利用正方形的面積減去4個直角三角形的面積即可求出正方形的面積,然后根據算術平方根的意義即可求出邊長;(2)根據(1)的方法畫解析:(1)正方形的面積為10,正方形的邊長為;(2)見解析【分析】(1)利用正方形的面積減去4個直角三角形的面積即可求出正方形的面積,然后根據算術平方根的意義即可求出邊長;(2)根據(1)的方法畫出圖形,然后建立數軸,根據算術平方根的意義即可表示出結論.【詳解】解:(1)正方形的面積為4×4-4××3×1=10則正方形的邊長為;(2)如下圖所示,正方形的面積為4×4-4××2×2=8,所以該正方形即為所求,如圖建立數軸,以數軸的原點為圓心,正方形的邊長為半徑作弧,分別交數軸于兩點∴正方形的邊長為∴弧與數軸的左邊交點為,右邊交點為,實數和在數軸上如圖所示.【點睛】此題考查的是求網格中圖形的面積和實數與數軸,掌握算術平方根的意義和利用數軸表示無理數是解題關鍵.4.(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數大小可以采用比商法;(3)采解析:(1);(2)<;(3)不能;理由見解析.【分析】(1)由正方形面積,易求得正方形邊長,再由勾股定理求對角線長;(2)由圓面積公式,和正方形面積可求周長,比較兩數大小可以采用比商法;(3)采用方程思想求出長方形的長邊,與正方形邊長比較大小即可.【詳解】解:(1)由已知AB2=1,則AB=1,由勾股定理,AC=;故答案為:.(2)由圓面積公式,可得圓半徑為,周長為,正方形周長為4.;即C圓<C正;故答案為:<(3)不能;由已知設長方形長和寬為3xcm和2xcm∴長方形面積為:2x?3x=12解得x=∴長方形長邊為3>4∴他不能裁出.【點睛】本題主要考查了算術平方根在正方形、圓、長方形面積中的應用,靈活的進行算術平方根的計算與無理數大小比較是解題的關鍵.5.(1)30;(2)不能.【解析】【分析】(1)根據已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正解析:(1)30;(2)不能.【解析】【分析】(1)根據已知正方形的面積求出大正方形的面積,即可求出邊長;(2)先求出長方形的邊長,再判斷即可.【詳解】解:(1)∵大正方形的面積是:∴大正方形的邊長是:=30;(2)設長方形紙片的長為4xcm,寬為3xcm,則4x?3x=720,解得:x=,4x==>30,所以沿此大正方形邊的方向剪出一個長方形,不能使剪出的長方形紙片的長寬之比為4:3,且面積為720cm2.故答案為(1)30;(2)不能.【點睛】本題考查算術平方根,解題的關鍵是能根據題意列出算式.二、解答題6.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據平行線的性質得到∠AOE的度數,再根據直角、周角的定義即可求得∠BOE的度數;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根據平行線的性質得到∠AOE的度數,再根據直角、周角的定義即可求得∠BOE的度數;(2)如圖②,過O點作OF∥CD,根據平行線的判定和性質可得∠OCD、∠BO′E′的數量關系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,結合角平分線的定義可推出∠OCD=2∠PCO=360°-2∠AOB,根據(2)∠OCD+∠BO′E′=360°-∠AOB,進而推出∠AOB=∠BO′E′.【詳解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.證明:如圖②,過O點作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.證明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分線,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【點睛】此題考查了平行線的判定和性質,平移的性質,直角的定義,角平分線的定義,正確作出輔助線是解決問題的關鍵.7.(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據平行線的性質與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PF解析:(1)90°;(2)∠PFC=∠PEA+∠P;(3)∠G=α【分析】(1)根據平行線的性質與判定可求解;(2)過P點作PN∥AB,則PN∥CD,可得∠FPN=∠PEA+∠FPE,進而可得∠PFC=∠PEA+∠FPE,即可求解;(3)令AB與PF交點為O,連接EF,根據三角形的內角和定理可得∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,由(2)得∠PEA=∠PFC-α,由∠OFE+∠OEF=180°-∠FOE=180°-∠PFC可求解.【詳解】解:(1)如圖1,過點P作PM∥AB,∴∠1=∠AEP.又∠AEP=40°,∴∠1=40°.∵AB∥CD,∴PM∥CD,∴∠2+∠PFD=180°.∵∠PFD=130°,∴∠2=180°-130°=50°.∴∠1+∠2=40°+50°=90°.即∠EPF=90°.(2)∠PFC=∠PEA+∠P.理由:過P點作PN∥AB,則PN∥CD,∴∠PEA=∠NPE,∵∠FPN=∠NPE+∠FPE,∴∠FPN=∠PEA+∠FPE,∵PN∥CD,∴∠FPN=∠PFC,∴∠PFC=∠PEA+∠FPE,即∠PFC=∠PEA+∠P;(3)令AB與PF交點為O,連接EF,如圖3.在△GFE中,∠G=180°-(∠GFE+∠GEF),∵∠GEF=∠PEA+∠OEF,∠GFE=∠PFC+∠OFE,∴∠GEF+∠GFE=∠PEA+∠PFC+∠OEF+∠OFE,∵由(2)知∠PFC=∠PEA+∠P,∴∠PEA=∠PFC-α,∵∠OFE+∠OEF=180°-∠FOE=180°-∠PFC,∴∠GEF+∠GFE=(∠PFC?α)+∠PFC+180°?∠PFC=180°?α,∴∠G=180°?(∠GEF+∠GFE)=180°?180°+α=α.【點睛】本題主要考查平行線的性質與判定,靈活運用平行線的性質與判定是解題的關鍵.8.(1)見解析;(2);(3)75°【分析】(1)根據平行線的性質、余角和補角的性質即可求解.(2)根據平行線的性質、對頂角的性質和平角的定義解答即可.(3)根據平行線的性質和角平分線的定義以解析:(1)見解析;(2);(3)75°【分析】(1)根據平行線的性質、余角和補角的性質即可求解.(2)根據平行線的性質、對頂角的性質和平角的定義解答即可.(3)根據平行線的性質和角平分線的定義以及三角形內角和解答即可.【詳解】解:(1)∠C=∠1+∠2,證明:過C作l∥MN,如下圖所示,∵l∥MN,∴∠4=∠2(兩直線平行,內錯角相等),∵l∥MN,PQ∥MN,∴l∥PQ,∴∠3=∠1(兩直線平行,內錯角相等),∴∠3+∠4=∠1+∠2,∴∠C=∠1+∠2;(2)∵∠BDF=∠GDF,∵∠BDF=∠PDC,∴∠GDF=∠PDC,∵∠PDC+∠CDG+∠GDF=180°,∴∠CDG+2∠PDC=180°,∴∠PDC=90°-∠CDG,由(1)可得,∠PDC+∠CEM=∠C=90°,∴∠AEN=∠CEM,∴,(3)設BD交MN于J.∵BC平分∠PBD,AM平分∠CAD,∠PBC=25°,∴∠PBD=2∠PBC=50°,∠CAM=∠MAD,∵PQ∥MN,∴∠BJA=∠PBD=50°,∴∠ADB=∠AJB-∠JAD=50°-∠JAD=50°-∠CAM,由(1)可得,∠ACB=∠PBC+∠CAM,∴∠ACB+∠ADB=∠PBC+∠CAM+50°-∠CAM=25°+50°=75°.【點睛】本題考查了平行線的性質、余角和補角的性質,解題的關鍵是根據平行找出角度之間的關系.9.(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據,用含t的式子表示出,根據(2)中給出的條件得出方程式,求出t的值,進而求出的度數;(3)根據燈B的解析:(1),;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根據,用含t的式子表示出,根據(2)中給出的條件得出方程式,求出t的值,進而求出的度數;(3)根據燈B的要求,t<150,在這個時間段內A可以轉3次,分情況討論.【詳解】解:(1).又,.,;(2)設燈轉動時間為秒,如圖,作,而,,,,,,(3)設燈轉動秒,兩燈的光束互相平行.依題意得①當時,兩河岸平行,所以兩光線平行,所以所以,即:,解得;②當時,兩光束平行,所以兩河岸平行,所以所以,,解得;③當時,圖大概如①所示,解得(不合題意)綜上所述,當秒或82.5秒時,兩燈的光束互相平行.【點睛】這道題考察的是平行線的性質和一元一次方程的應用.根據平行線的性質找到對應角列出方程是解題的關鍵.10.(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;(2)依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠G解析:(1)40°;(2)65°;(3)存在,56°或20°【分析】(1)依據平行線的性質以及角平分線的定義,即可得到∠PCG的度數;(2)依據平行線的性質以及角平分線的定義,即可得到∠ECG=∠GCF=25°,再根據PQ∥CE,即可得出∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=4x-3x=x,分兩種情況討論:①當點G、F在點E的右側時,②當點G、F在點E的左側時,依據等量關系列方程求解即可.【詳解】解:(1)∵∠CEB=100°,AB∥CD,∴∠ECQ=80°,∵∠PCF=∠PCQ,CG平分∠ECF,∴∠PCG=∠PCF+∠FCG=∠QCF+∠FCE=∠ECQ=40°;(2)∵AB∥CD∴∠QCG=∠EGC,∠QCG+∠ECG=∠ECQ=80°,∴∠EGC+∠ECG=80°,又∵∠EGC-∠ECG=30°,∴∠EGC=55°,∠ECG=25°,∴∠ECG=∠GCF=25°,∠PCF=∠PCQ=(80°-50°)=15°,∵PQ∥CE,∴∠CPQ=∠ECP=65°;(3)設∠EGC=4x,∠EFC=3x,則∠GCF=∠FCD=4x-3x=x,①當點G、F在點E的右側時,則∠ECG=x,∠PCF=∠PCD=x,∵∠ECD=80°,∴x+x+x+x=80°,解得x=16°,∴∠CPQ=∠ECP=x+x+x=56°;②當點G、F在點E的左側時,則∠ECG=∠GCF=x,∵∠CGF=180°-4x,∠GCQ=80°+x,∴180°-4x=80°+x,解得x=20°,∴∠FCQ=∠ECF+∠ECQ=40°+80°=120°,∴∠PCQ=∠FCQ=60°,∴∠CPQ=∠ECP=80°-60°=20°.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同旁內角互補;兩直線平行,內錯角相等.三、解答題11.(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據等角的補角相等求出∠3與∠4的補角相等,再根據內錯角相等,兩直線平行即可判定a∥b;(2)根據入射光線與鏡面的夾角與反解析:(1)平行,理由見解析;(2)65°;(3)5秒或95秒【分析】(1)根據等角的補角相等求出∠3與∠4的補角相等,再根據內錯角相等,兩直線平行即可判定a∥b;(2)根據入射光線與鏡面的夾角與反射光線與鏡面的夾角相等可得∠1=∠2,然后根據平角等于180°求出∠1的度數,再加上40°即可得解;(3)分①AB與CD在EF的兩側,分別表示出∠ACD與∠BAC,然后根據兩直線平行,內錯角相等列式計算即可得解;②CD旋轉到與AB都在EF的右側,分別表示出∠DCF與∠BAC,然后根據兩直線平行,同位角相等列式計算即可得解;③CD旋轉到與AB都在EF的左側,分別表示出∠DCF與∠BAC,然后根據兩直線平行,同位角相等列式計算即可得解.【詳解】解:(1)平行.理由如下:如圖1,∵∠3=∠4,∴∠5=∠6,∵∠1=∠2,∴∠1+∠5=∠2+∠6,∴a∥b(內錯角相等,兩直線平行);(2)如圖2:∵入射光線與鏡面的夾角與反射光線與鏡面的夾角相等,∴∠1=∠2,∵入射光線a與水平線OC的夾角為40°,b垂直照射到井底,∴∠1+∠2=180°-40°-90°=50°,∴∠1=×50°=25°,∴MN與水平線的夾角為:25°+40°=65°,即MN與水平線的夾角為65°,可使反射光線b正好垂直照射到井底;(3)存在.如圖①,AB與CD在EF的兩側時,∵∠BAF=105°,∠DCF=65°,∴∠ACD=180°-65°-3t°=115°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠ACD=∠BAC,即115-3t=105-t,解得t=5;如圖②,CD旋轉到與AB都在EF的右側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=360°-3t°-65°=295°-3t°,∠BAC=105°-t°,要使AB∥CD,則∠DCF=∠BAC,即295-3t=105-t,解得t=95;如圖③,CD旋轉到與AB都在EF的左側時,∵∠BAF=105°,∠DCF=65°,∴∠DCF=3t°-(180°-65°+180°)=3t°-295°,∠BAC=t°-105°,要使AB∥CD,則∠DCF=∠BAC,即3t-295=t-105,解得t=95,此時t>105,∴此情況不存在.綜上所述,t為5秒或95秒時,CD與AB平行.【點睛】本題考查了平行線的判定與性質,光學原理,讀懂題意并熟練掌握平行線的判定方法與性質是解題的關鍵,(3)要注意分情況討論.12.(1)①見解析;②垂;(2)見解析【分析】(1)①過點折紙,使痕跡垂直直線,然后過點折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實際上是在尋找過點的直線的垂線.(2)先根據解析:(1)①見解析;②垂;(2)見解析【分析】(1)①過點折紙,使痕跡垂直直線,然后過點折紙使痕跡與前面的痕跡垂直,從而得到直線;②步驟(b)中,折紙實際上是在尋找過點的直線的垂線.(2)先根據平行線的性質得到,再利用角平分線的定義得到,然后根據平行線的判定得到結論.【詳解】(1)解:①如圖2所示:②在(1)中的步驟(b)中,折紙實際上是在尋找過點的直線的垂線.故答案為垂;(2)證明:平分,平分(已知),,(角平分線的定義),(已知),(兩直線平行,內錯角相等),(等量代換),(等式性質),(內錯角相等,兩直線平行).【點睛】本題考查了作圖復雜作圖:復雜作圖是在五種基本作圖的基礎上進行作圖,一般是結合了幾何圖形的性質和基本作圖方法.解決此類題目的關鍵是熟悉基本幾何圖形的性質,結合幾何圖形的基本性質把復雜作圖拆解成基本作圖,逐步操作.也考查了平行線的性質與判定.13.(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據平行線的性質可得,再根據角的和差可得,然后根據平行線的判定即可得證;(2)(Ⅰ)先根據平行線的性質可得,從而可得,再根據角的和差可得解析:(1)證明見解析;(2)(Ⅰ);(Ⅱ).【分析】(1)先根據平行線的性質可得,再根據角的和差可得,然后根據平行線的判定即可得證;(2)(Ⅰ)先根據平行線的性質可得,從而可得,再根據角的和差可得,然后根據即可得;(Ⅱ)設,從而可得,先根據角平分線的定義可得,再根據角的和差可得,然后根據建立方程可求出x的值,從而可得的度數,最后根據平行線的性質即可得.【詳解】(1),,又,,;(2)(Ⅰ),,,,由(1)已得:,,;(Ⅱ)設,則,平分,,,,,由(1)已得:,,即,解得,,又,.【點睛】本題考查了平行線的判定與性質、角的和差、角平分線的定義、一元一次方程的幾何應用等知識點,熟練掌握平行線的判定與性質是解題關鍵.14.(1)見解析;(2);見解析;(3)【分析】(1)過點作,根據平行線性質可得;(2)由(1)結論可得:,,再根據角平分線性質可得;(3)由(2)結論可得:.【詳解】(1)證明:如圖1,過解析:(1)見解析;(2);見解析;(3)【分析】(1)過點作,根據平行線性質可得;(2)由(1)結論可得:,,再根據角平分線性質可得;(3)由(2)結論可得:.【詳解】(1)證明:如圖1,過點作,∵,∴,∴,,又∵,∴;(2)如圖2,由(1)可得:,,∵的平分線與的平分線相交于點,∴,∴;(3)由(2)可得:,,∵,,∴,∴;【點睛】考核知識點:平行線性質和判定的綜合運用.熟練運用平行線性質和判定是關鍵.15.(1);(2)不變化,,理由見解析;(3)【分析】(1)結合題意,根據角平分線的性質,得;再根據平行線的性質計算,即可得到答案;(2)根據平行線的性質,得,;結合角平分線性質,得,即可完成求解解析:(1);(2)不變化,,理由見解析;(3)【分析】(1)結合題意,根據角平分線的性質,得;再根據平行線的性質計算,即可得到答案;(2)根據平行線的性質,得,;結合角平分線性質,得,即可完成求解;(3)根據平行線的性質,得;結合,推導得;再結合(1)的結論計算,即可得到答案.【詳解】(1)∵BC,BD分別評分和,∴,∴又∵,∴∵,∴∴;(2)∵,∴,又∵BD平分∴,∴;∴與之間的數量關系保持不變;(3)∵,∴又∵,∴,∵∴由(1)可得,∴.【點睛】本題考查了角平分線、平行線的知識;解題的關鍵是熟練掌握角平分線、平行線的性質,從而完成求解.四、解答題16.(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,解析:(1)∠E、∠CAF;∠CDE、∠BAF;(2)①20°;②30【分析】(1)由翻折的性質和平行線的性質即可得與∠B相等的角;由等角代換即可得與∠C相等的角;(2)①由三角形內角和定理可得,再由根據角的和差計算即可得∠C的度數,進而得∠B的度數.②根據翻折的性質和三角形外角及三角形內角和定理,用含x的代數式表示出∠FDE、∠DFE的度數,分三種情況討論求出符合題意的x值即可.【詳解】(1)由翻折的性質可得:∠E=∠B,∵∠BAC=90°,AE⊥BC,∴∠DFE=90°,∴180°-∠BAC=180°-∠DFE=90°,即:∠B+∠C=∠E+∠FDE=90°,∴∠C=∠FDE,∴AC∥DE,∴∠CAF=∠E,∴∠CAF=∠E=∠B故與∠B相等的角有∠CAF和∠E;∵∠BAC=90°,AE⊥BC,∴∠BAF+∠CAF=90°,∠CFA=180°-(∠CAF+∠C)=90°∴∠BAF+∠CAF=∠CAF+∠C=90°∴∠BAF=∠C又AC∥DE,∴∠C=∠CDE,∴故與∠C相等的角有∠CDE、∠BAF;(2)①∵∴又∵,∴∠C=70°,∠B=20°;②∵∠BAD=x°,∠B=20°則,,由翻折可知:∵,,∴,,當∠FDE=∠DFE時,,解得:;當∠FDE=∠E時,,解得:(因為0<x≤45,故舍去);當∠DFE=∠E時,,解得:(因為0<x≤45,故舍去);綜上所述,存在這樣的x的值,使得△DEF中有兩個角相等.且.【點睛】本題考查圖形的翻折、三角形內角和定理、平行線的判定及其性質、三角形外角的性質、等角代換,解題的關鍵是熟知圖形翻折的性質及綜合運用所學知識.17.(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據兩直線平行,同旁內角解析:(1)105°;(2)135°;(3)5.5或11.5.【分析】(1)在△CEN中,用三角形內角和定理即可求出;(2)由∠BON=30°,∠N=30°可得MN∥CB,再根據兩直線平行,同旁內角互補即可求出∠CEN的度數.(3)畫出圖形,求出在MN⊥CD時的旋轉角,再除以30°即得結果.【詳解】解:(1)在△CEN中,∠CEN=180°-∠ECN-∠CNE=180°-45°-30°=105°;(2)∵∠BON=30°,∠N=30°,∴∠BON=∠N,∴MN∥CB.∴∠OCD+∠CEN=180°,∵∠OCD=45°∴∠CEN=180°-45°=135°;(3)如圖,MN⊥CD時,旋轉角為360°-90°-45°-60°=165°,或360°-(60°-45°)=345°,所以在第165°÷30°=5.5或345°÷30°=11.5秒時,直線MN恰好與直線CD垂直.【點睛】本題以學生熟悉的三角板為載體,考查了三角形的內角和、平行線的判定和性質、垂直的定義和旋轉的性質,前兩小題難度不大,難點是第(3)小題,解題的關鍵是畫出適合題意的幾何圖形,弄清求旋轉角的思路和方法,本題的第一種情況是將旋轉角∠DOM放在四邊形DOMF中,用四邊形內角和求解,第二種情況是用周角減去∠DOM的度數.18.(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF解析:(1)證明見解析;(2)900°,180°(n-1);(3)(180n-180-2m)°【詳解】【模型】(1)證明:過點E作EF∥CD,∵AB∥CD,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【應用】(2)分別過E點,F點,G點,H點作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 汽車租賃協議合同書
- 廣告標識制作合同
- 保溫施工協議合同
- 對外勞務輸出合同
- 印刷廠全員勞動合同書
- 三方建筑工程施工合同
- 拆遷合同終止協議
- 外協維修協議合同
- 解除托管合同協議
- 合伙協議經營合同
- 放療皮膚反應分級護理
- 2025年03月內蒙古鄂爾多斯市東勝區事業單位引進高層次人才和緊缺專業人才50人筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 小學消防知識教育
- 深入貫徹學習2025年中央八項規定精神教育測試題及答案
- 安徽2025年03月合肥高新技術產業開發區管理委員會公開招考60名工作人員筆試歷年參考題庫考點剖析附解題思路及答案詳解
- 2025年第三屆天揚杯建筑業財稅知識競賽題庫附答案(601-700題)
- 2025年四川綿陽市投資控股(集團)有限公司招聘筆試參考題庫附帶答案詳解
- (二調)棗莊市2025屆高三模擬考試歷史試卷(含答案)
- 上海市普陀區2024-2025學年高三下學期二模地理試題(含答案)
- 【初中語文】第11課《山地回憶》課件+2024-2025學年統編版語文七年級下冊
- 2025年公務員遴選考試公共基礎知識必考題庫170題及答案(四)
評論
0/150
提交評論