安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題含解析_第1頁
安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題含解析_第2頁
安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題含解析_第3頁
安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題含解析_第4頁
安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省宿州市宿城第一中學2025屆高二數學第一學期期末質量檢測模擬試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在等差數列中,已知,,則使數列的前n項和成立時n的最小值為()A.6 B.7C.9 D.102.已知橢圓C:的左、右焦點分別為F1,F2,過點F1作直線l交橢圓C于M,N兩點,則的周長為()A.3 B.4C.6 D.83.已知數據的平均數是,方差是4,則數據的方差是()A.3.4 B.3.6C.3.8 D.44.已知直線為拋物線的準線,直線經過拋物線的焦點,與拋物線交于點,則的最小值為()A. B.C.4 D.85.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為6.過雙曲線的左焦點作x軸的垂線交曲線C于點P,為右焦點,若,則雙曲線的離心率為()A. B.C. D.7.在等比數列中,若是函數的極值點,則的值是()A. B.C. D.8.在空間中,“直線與沒有公共點”是“直線與異面”的()A.必要不充分條件 B.充要條件C.充分不必要條件 D.既不充分也不必要條件9.已知公差為的等差數列滿足,則()A B.C. D.10.已知圓:和點,是圓上一點,線段的垂直平分線交于點,則點的軌跡方程是:()A. B.C. D.11.直線被橢圓截得的弦長是A. B.C. D.12.函數的定義域為,,對任意,,則的解集為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若方程表示的曲線是雙曲線,則實數m的取值范圍是___;該雙曲線的焦距是___14.已知兩平行直線與間的距離為3,則C的值是________.15.已知等差數列的通項公式為,那么它的前項和___________.16.若直線與直線平行,則直線與之間的距離為_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四面體ABCD中,,平面ABC,點M為棱AB的中點,,(1)證明:;(2)求平面BCD和平面DCM夾角的余弦值18.(12分)如圖,在四棱錐P-ABCD中,平面ABCD,,,,,.(1)證明:平面平面PAC;(2)求平面PCD與平面PAB夾角的余弦值.19.(12分)如圖,正方體的棱長為2,點為的中點.(1)求直線與平面所成角的正弦值;(2)求點到平面的距離.20.(12分)已知二次函數,.(1)若,求函數的最小值;(2)若,解關于x的不等式.21.(12分)已知一張紙上畫有半徑為4的圓O,在圓O內有一個定點A,且,折疊紙片,使圓上某一點剛好與A點重合,這樣的每一種折法,都留下一條直線折痕,當取遍圓上所有點時,所有折痕與的交點形成的曲線記為C.(1)求曲線C的焦點在軸上的標準方程;(2)過曲線C的右焦點(左焦點為)的直線l與曲線C交于不同的兩點M,N,記的面積為S,試求S的取值范圍.22.(10分)如圖,已知正方體的棱長為2,,,分別為,,的中點(1)求直線與直線所成角余弦值;(2)求點到平面的距離

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據等差數列的性質及等差中項結合前項和公式求得,,從而得出結論.【詳解】,,,,,,,使數列的前n項和成立時n的最小值為10,故選:D.2、D【解析】由的周長為,結合橢圓的定義,即可求解.【詳解】由題意,橢圓,可得,即,如圖所示,根據橢圓的定義,可得的周長為故選:D.3、B【解析】利用方差的定義即可解得.【詳解】由方差的定義,,則,所以數據的方差為:.故選:B4、D【解析】先求拋物線的方程,再聯立直線方程和拋物線方程,由弦長公式可求的最小值.【詳解】因為直線為拋物線的準線,故即,故拋物線方程為:.設直線,則,,而,當且僅當等號成立,故的最小值為8,故選:D.5、D【解析】根據已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D6、D【解析】由題知是等腰直角三角形,,又根據通徑的結論知,結合可列出關于的二次齊次式,即可求解離心率.【詳解】由題知是等腰直角三角形,且,,又,,即,,,即,解得,,.故選:D.7、B【解析】根據導數的性質求出函數的極值點,再根據等比數列的性質進行求解即可.【詳解】,當時,單調遞增,當時,單調遞減,當時,單調遞增,所以是函數的極值點,因為,且所以,故選:B8、A【解析】由于在空間中,若直線與沒有公共點,則直線與平行或異面,再根據充分、必要條件的概念判斷,即可得到結果.【詳解】在空間中,若直線與沒有公共點,則直線與平行或異面.故“直線與沒有公共點”是“直線與異面”的必要不充分條件.故選:A.9、C【解析】根據等差數列前n項和,即可得到答案.【詳解】∵數列是公差為的等差數列,∴,∴.故選:C10、B【解析】先由在線段的垂直平分線上得出,再由題意得出,進而由橢圓定義可求出點的軌跡方程.【詳解】如圖,因為在線段的垂直平分線上,所以,又點在圓上,所以,因此,點在以、為焦點的橢圓上.其中,,則.從而點的軌跡方程是.故選:B.11、A【解析】直線y=x+1代入,得出關于x的二次方程,求出交點坐標,即可求出弦長【詳解】將直線y=x+1代入,可得,即5x2+8x﹣4=0,∴x1=﹣2,x2,∴y1=﹣1,y2,∴直線y=x+1被橢圓x2+4y2=8截得的弦長為故選A【點睛】本題查直線與橢圓的位置關系,考查弦長的計算,屬于基礎題12、B【解析】構造函數,利用導數判斷出函數在上的單調性,將不等式轉化為,利用函數的單調性即可求解.【詳解】依題意可設,所以.所以函數在上單調遞增,又因為.所以要使,即,只需要,故選B.【點睛】本題考查利用函數的單調性解不等式,解題的關鍵就是利用導數不等式的結構構造新函數來解,考查分析問題和解決問題的能力,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13、①.②.2【解析】由題意可得,由此可解得m的范圍,進一步將方程化為標準方程即可求得焦距【詳解】由所表示的曲線是雙曲線,可知,解得,當時,方程可變為:,此時雙曲線焦距為,當時,m不存在,不合題意;故雙曲線的焦距:故答案為:;14、【解析】根據兩條平行直線之間的距離公式即可得解.【詳解】兩平行直線與間的距離為3,所以,所以故答案為:15、【解析】由題意知等差數列的通項公式,即可求出首項,再利用等差數列求和公式即可得到答案.【詳解】已知等差數列的通項公式為,..故答案為:.16、【解析】由直線平行求參數m,再利用平行直線的距離公式求與之間的距離.【詳解】由題設,,即,所以,,所以直線與之間的距離為.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)【解析】(1)根據題意,利用線面垂直的判定定理證明平面ABD即可;(2)以A為原點,分別以,,方向為x軸,y軸,z軸的正方向的空間直角坐標系,分別求得平面BCD的一個法向量和平面DCM的一個法向量,然后由求解【小問1詳解】證明:∵平面ABC,∴,又,,∴平面ABD,∴【小問2詳解】如圖,以A為原點,分別以,,的方向為x軸,y軸,z軸的正方向的空間直角坐標系,則,,,,,依題意,可得,設為平面BCD的一個法向量,則,不妨令,可得設為平面DCM的一個法向量,則,不妨令,可得,所以所以平面BCD和平面DCM的夾角的余弦值為18、(1)證明見解析(2)【解析】(1)過點C作于點H,由平面幾何知識證明,然后由線面垂直的性質得線線垂直,從而得線面垂直,然后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求二面角【小問1詳解】在梯形ABCD中,過點C作于點H.由,,,,可知,,,.所以,即,①因為平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小問2詳解】因為AB,AD,AP兩兩垂直,所以以A為原點,以AB,AD,AP所在的直線分別為x,y,z軸建立空間直角坐標系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.設平面PCD的法向量為,則,取,則,,則.平面PAB的一個法向量為,所以,所以平面PCD與平面PAB所成的銳二面角的余弦值為.19、(1)(2)【解析】(1)建立空間直角坐標系,求出平面的一個法向量及,利用向量的夾角公式即可得解;(2)直接利用向量公式求解即可【小問1詳解】解:以點作坐標原點,建立如圖所示的空間直角坐標系,則,0,,,2,,,0,,,0,,設平面的一個法向量為,又,則,則可取,又,設直線與平面的夾角為,則,直線與平面的正弦值為;【小問2詳解】解:因為所以點到平面的距離為,點到平面的距離為20、(1)(2)當時,不等式的解集為當時,不等式的解集為當時,不等式的解集為【解析】(1)帶入,將化解為,再利用基本不等式求最值即可;(2)將不等式移項整理為,再對a分類討論,比較兩根的大小,即可求得解集.【小問1詳解】當a=3時,函數可整理為,因為,所以利用基本不等式,當且僅當,即時,y取到最小值.所以,當時,函數的最小值為.【小問2詳解】將不等式整理為,令,即,解得兩根為與1,因為,當時,即時,此時的解集為;當時,即時,此時的解集為;當時,即時,此時的解集為.綜上所述,當時,不等式的解集為;當時,不等式的解集為;當時,不等式的解集為.21、(1);(2)﹒【解析】(1)根據題意,作出圖像,可得,由此可知M的軌跡C為以O、A為焦點的橢圓;(2)分為l斜率存在和不存在時討論,斜率存在時,直線方程和橢圓方程聯立,用韋達定理表示的面積,根據變量范圍可求面積的最大值﹒【小問1詳解】以OA中點G坐標原點,OA所在直線為x軸建立平面直角坐標系,如圖:∴可知,,設折痕與和分別交于M,N兩點,則MN垂直平分,∴,又∵,∴,∴M的軌跡是以O,A為焦點,4為長軸的橢圓.∴M的軌跡方程C為;【小問2詳解】設,,則的周長為當軸時,l的方程為,,,當l與x軸不垂直時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論