西雙版納市重點中學2025屆數學高三上期末達標測試試題含解析_第1頁
西雙版納市重點中學2025屆數學高三上期末達標測試試題含解析_第2頁
西雙版納市重點中學2025屆數學高三上期末達標測試試題含解析_第3頁
西雙版納市重點中學2025屆數學高三上期末達標測試試題含解析_第4頁
西雙版納市重點中學2025屆數學高三上期末達標測試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

西雙版納市重點中學2025屆數學高三上期末達標測試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知Sn為等比數列{an}的前n項和,a5=16,a3a4=﹣32,則S8=()A.﹣21 B.﹣24 C.85 D.﹣852.“哥德巴赫猜想”是近代三大數學難題之一,其內容是:一個大于2的偶數都可以寫成兩個質數(素數)之和,也就是我們所謂的“1+1”問題.它是1742年由數學家哥德巴赫提出的,我國數學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數的和,則拆成的和式中,加數全部為質數的概率為()A. B. C. D.3.已知角的終邊與單位圓交于點,則等于()A. B. C. D.4.已知函數,則不等式的解集是()A. B. C. D.5.已知函數,,若方程恰有三個不相等的實根,則的取值范圍為()A. B.C. D.6.設,則()A. B. C. D.7.已知,復數,,且為實數,則()A. B. C.3 D.-38.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則9.定義域為R的偶函數滿足任意,有,且當時,.若函數至少有三個零點,則的取值范圍是()A. B. C. D.10.已知P是雙曲線漸近線上一點,,是雙曲線的左、右焦點,,記,PO,的斜率為,k,,若,-2k,成等差數列,則此雙曲線的離心率為()A. B. C. D.11.已知集合A={x|–1<x<2},B={x|x>1},則A∪B=A.(–1,1) B.(1,2) C.(–1,+∞) D.(1,+∞)12.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.14.已知數列是等比數列,,則__________.15.已知多項式滿足,則_________,__________.16.如圖,在正四棱柱中,P是側棱上一點,且.設三棱錐的體積為,正四棱柱的體積為V,則的值為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,以坐標原點為極點,軸的正半軸為極軸建立極坐標系.已知直線的參數方程為(為參數),曲線的極坐標方程為;(1)求直線的直角坐標方程和曲線的直角坐標方程;(2)若直線與曲線交點分別為,,點,求的值.18.(12分)設函數,是函數的導數.(1)若,證明在區間上沒有零點;(2)在上恒成立,求的取值范圍.19.(12分)已知函數,.(1)求的值;(2)令在上最小值為,證明:.20.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.21.(12分)已知函數,.(1)判斷函數在區間上的零點的個數;(2)記函數在區間上的兩個極值點分別為、,求證:.22.(10分)如圖,在中,角的對邊分別為,且滿足,線段的中點為.(Ⅰ)求角的大小;(Ⅱ)已知,求的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

由等比數列的性質求得a1q4=16,a12q5=﹣32,通過解該方程求得它們的值,求首項和公比,根據等比數列的前n項和公式解答即可.【詳解】設等比數列{an}的公比為q,∵a5=16,a3a4=﹣32,∴a1q4=16,a12q5=﹣32,∴q=﹣2,則,則,故選:D.【點睛】本題主要考查等比數列的前n項和,根據等比數列建立條件關系求出公比是解決本題的關鍵,屬于基礎題.2、A【解析】

列出所有可以表示成和為6的正整數式子,找到加數全部為質數的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數全為質數的有(3,3),根據古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.3、B【解析】

先由三角函數的定義求出,再由二倍角公式可求.【詳解】解:角的終邊與單位圓交于點,,故選:B【點睛】考查三角函數的定義和二倍角公式,是基礎題.4、B【解析】

由導數確定函數的單調性,利用函數單調性解不等式即可.【詳解】函數,可得,時,,單調遞增,∵,故不等式的解集等價于不等式的解集..∴.故選:B.【點睛】本題主要考查了利用導數判定函數的單調性,根據單調性解不等式,屬于中檔題.5、B【解析】

由題意可將方程轉化為,令,,進而將方程轉化為,即或,再利用的單調性與最值即可得到結論.【詳解】由題意知方程在上恰有三個不相等的實根,即,①.因為,①式兩邊同除以,得.所以方程有三個不等的正實根.記,,則上述方程轉化為.即,所以或.因為,當時,,所以在,上單調遞增,且時,.當時,,在上單調遞減,且時,.所以當時,取最大值,當,有一根.所以恰有兩個不相等的實根,所以.故選:B.【點睛】本題考查了函數與方程的關系,考查函數的單調性與最值,轉化的數學思想,屬于中檔題.6、D【解析】

結合指數函數及對數函數的單調性,可判斷出,,,即可選出答案.【詳解】由,即,又,即,,即,所以.故選:D.【點睛】本題考查了幾個數的大小比較,考查了指數函數與對數函數的單調性的應用,屬于基礎題.7、B【解析】

把和代入再由復數代數形式的乘法運算化簡,利用虛部為0求得m值.【詳解】因為為實數,所以,解得.【點睛】本題考查復數的概念,考查運算求解能力.8、D【解析】

根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.9、B【解析】

由題意可得的周期為,當時,,令,則的圖像和的圖像至少有個交點,畫出圖像,數形結合,根據,求得的取值范圍.【詳解】是定義域為R的偶函數,滿足任意,,令,又,為周期為的偶函數,當時,,當,當,作出圖像,如下圖所示:函數至少有三個零點,則的圖像和的圖像至少有個交點,,若,的圖像和的圖像只有1個交點,不合題意,所以,的圖像和的圖像至少有個交點,則有,即,.故選:B.【點睛】本題考查函數周期性及其應用,解題過程中用到了數形結合方法,這也是高考常考的熱點問題,屬于中檔題.10、B【解析】

求得雙曲線的一條漸近線方程,設出的坐標,由題意求得,運用直線的斜率公式可得,,,再由等差數列中項性質和離心率公式,計算可得所求值.【詳解】設雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設,,則,,,由,,成等差數列,可得,化為,即,可得,故選:.【點睛】本題考查雙曲線的方程和性質,主要是漸近線方程和離心率,考查方程思想和運算能力,意在考查學生對這些知識的理解掌握水平.11、C【解析】

根據并集的求法直接求出結果.【詳解】∵,∴,故選C.【點睛】考查并集的求法,屬于基礎題.12、C【解析】

由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【點睛】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.14、【解析】

根據等比數列通項公式,首先求得,然后求得.【詳解】設的公比為,由,得,故.故答案為:【點睛】本小題主要考查等比數列通項公式的基本量計算,屬于基礎題.15、【解析】∵多項式滿足∴令,得,則∴∴該多項式的一次項系數為∴∴∴令,得故答案為5,7216、【解析】

設正四棱柱的底面邊長,高,再根據柱體、錐體的體積公式計算可得.【詳解】解:設正四棱柱的底面邊長,高,則,即故答案為:【點睛】本題考查柱體、錐體的體積計算,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ),曲線(Ⅱ)【解析】試題分析:(1)消去參數可得直線的直角坐標系方程,由可得曲線的直角坐標方程;(2)將(為參數)代入曲線的方程得:,,利用韋達定理求解即可.試題解析:(1),曲線,(2)將(為參數)代入曲線的方程得:.所以.所以.18、(1)證明見解析(2)【解析】

(1)先利用導數的四則運算法則和導數公式求出,再由函數的導數可知,函數在上單調遞增,在上單調遞減,而,,可知在區間上恒成立,即在區間上沒有零點;(2)由題意可將轉化為,構造函數,利用導數討論研究其在上的單調性,由,即可求出的取值范圍.【詳解】(1)若,則,,設,則,,,故函數是奇函數.當時,,,這時,又函數是奇函數,所以當時,.綜上,當時,函數單調遞增;當時,函數單調遞減.又,,故在區間上恒成立,所以在區間上沒有零點.(2),由,所以恒成立,若,則,設,.故當時,,又,所以當時,,滿足題意;當時,有,與條件矛盾,舍去;當時,令,則,又,故在區間上有無窮多個零點,設最小的零點為,則當時,,因此在上單調遞增.,所以.于是,當時,,得,與條件矛盾.故的取值范圍是.【點睛】本題主要考查導數的四則運算法則和導數公式的應用,以及利用導數研究函數的單調性和最值,涉及分類討論思想和放縮法的應用,難度較大,意在考查學生的數學建模能力,數學運算能力和邏輯推理能力,屬于較難題.19、(1);(2)見解析.【解析】

(1)將轉化為對任意恒成立,令,故只需,即可求出的值;(2)由(1)知,可得,令,可證,使得,從而可確定在上單調遞減,在上單調遞增,進而可得,即,即可證出.【詳解】函數的定義域為,因為對任意恒成立,即對任意恒成立,令,則,當時,,故在上單調遞增,又,所以當時,,不符合題意;當時,令得,當時,;當時,,所以在上單調遞增,在上單調遞減,所以,所以要使在時恒成立,則只需,即,令,,所以,當時,;當時,,所以在單調遞減,在上單調遞增,所以,即,又,所以,故滿足條件的的值只有(2)由(1)知,所以,令,則,當,時,即在上單調遞增;又,,所以,使得,當時,;當時,,即在上單調遞減,在上單調遞增,且所以,即,所以,即.【點睛】本題主要考查利用導數法求函數的最值及恒成立問題處理方法,第(2)問通過最值問題深化對函數的單調性的考查,同時考查轉化與化歸的思想,屬于中檔題.20、(1)(2)【解析】

(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.21、(1);(2)見解析.【解析】

(1)利用導數分析函數在區間上的單調性與極值,結合零點存在定理可得出結論;(2)設函數的極大值點和極小值點分別為、,由(1)知,,且滿足,,于是得出,由得,利用正切函數的單調性推導出,再利用正弦函數的單調性可得出結論.【詳解】(1),,,當時,,,,則函數在上單調遞增;當時,,,,則函數在上單調遞減;當時,,,,則函數在上單調遞增.,,,,.所以,函數在與不存在零點,在區間和上各存在一個零點.綜上所述,函數在區間上的零點的個數為;(2),.由(1)得,在區間與上存在零點,所以,函數在區間與上各存在一個極值點、,且,,且滿足即,,,又,即,,,,,由在

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論