2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題含解析_第1頁
2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題含解析_第2頁
2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題含解析_第3頁
2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題含解析_第4頁
2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆甘肅省白銀市靖遠縣高二數學第一學期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知且,則的值為()A.3 B.4C.5 D.62.設直線,.若,則的值為()A.或 B.或C. D.3.已知數列滿足,令是數列的前n項積,,現給出下列四個結論:①;②為單調遞增的等比數列;③當時,取得最大值;④當時,取得最大值其中所有正確結論的編號為()A.②④ B.①③C.②③④ D.①③④4.記為等差數列的前n項和,有下列四個等式,甲:;乙:;丙:;?。海绻挥幸粋€等式不成立,則該等式為()A.甲 B.乙C.丙 D.丁5.函數區間上有()A.極大值為27,極小值為-5 B.無極大值,極小值為-5C.極大值為27,無極小值 D.無極大值,無極小值6.如圖所示,向量在一條直線上,且則()A. B.C. D.7.在遞增等比數列中,為其前n項和.已知,,且,則數列的公比為()A.3 B.4C.5 D.68.已知空間中三點,,,則下列結論中正確的有()A.平面ABC的一個法向量是 B.的一個單位向量的坐標是C. D.與是共線向量9.已知兩定點和,動點在直線上移動,橢圓C以A,B為焦點且經過點P,則橢圓C的短軸的最小值為()A. B.C. D.10.已知函數的導函數為,且滿足,則()A. B.C. D.11.直線與圓相交于點,點是坐標原點,若是正三角形,則實數的值為A.1 B.-1C. D.12.已知向量,滿足條件,則的值為()A.1 B.C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知橢圓的右頂點為,為上一點,則的最大值為______.14.如圖,AD與BC是三棱錐中互相垂直的棱,,(c為常數).若,則實數的取值范圍為__________.15.若,且,則的最小值是____________.16.過點的直線與雙曲線交于兩點,且點恰好是線段的中點,則直線的方程為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線:上的點到其準線的距離為5.(1)求拋物線的方程;(2)已知為原點,點在拋物線上,若的面積為6,求點的坐標.18.(12分)已知橢圓,其焦點為,,離心率為,若點滿足.(1)求橢圓的方程;(2)若直線與橢圓交于兩點,為坐標原點,的重心滿足:,求實數的取值范圍.19.(12分)如圖,在四棱錐中,平面,四邊形是菱形,,,是的中點(1)求證:;(2)已知二面角的余弦值為,求與平面所成角的正弦值20.(12分)阿基米德(公元前年—公元前年)不僅是著名的物理學家,也是著名的數學家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長半軸與短半軸的乘積.已知平面直角坐標系中,橢圓:的面積為,兩焦點與短軸的一個頂點構成等邊三角形.(1)求橢圓的標準方程;(2)過點的直線與交于不同的兩點,求面積的最大值.21.(12分)已知三棱柱的側棱垂直于底面,,,,,分別是,的中點.(Ⅰ)證明:平面;(Ⅱ)求二面角的余弦值.22.(10分)雙曲線的離心率為2,經過C的焦點垂直于x軸的直線被C所截得的弦長為12.(1)求C的方程;(2)設A,B是C上兩點,線段AB的中點為,求直線AB的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】由空間向量數量積的坐標運算求解【詳解】由已知,解得故選:C2、A【解析】由兩直線垂直可得出關于實數的等式,即可解得實數的值.【詳解】因為,則,解得或.故選:A.3、B【解析】求出,即可判斷選項①正確;求出,即可選項②錯誤;求出,利用單調性即可判斷選項③正確;求出,即可判斷選項④錯誤,即得解.【詳解】解:因為,①所以,,②①②得,,整理得,又,滿足上式,所以,因為,所以數列為等差數列,公差為,所以,故①正確;,因為,故數列為等比數列,其中首項,公比為的等比數列,因為,,所以數列為遞減的等比數列,故②錯誤;,因為為單調遞增函數,所以當最大時,有最大值,因為,所以時,最大,即時,取得最大值,故③正確;設,由可得,,解得或,又因為,所以時,取得最大值,故④錯誤;故選:B4、D【解析】分別假設甲、乙、丙、丁不成立,驗證得到答案【詳解】設數列的公差為,若甲不成立,則,由①,③可得,此時與②矛盾;A錯,若乙不成立,則,由①,③可得,此時;與②矛盾;B錯,若丙不成立,則,由①,③可得,此時;與②矛盾;C錯,若丁不成立,則,由①,③可得,此時;,D對,故選:D.5、B【解析】求出得出的單調區間,從而可得答案.【詳解】當時,,單調遞減.當時,,單調遞增.所以當時,取得極小值,極小值為,無極大值.故選:B6、D【解析】根據向量加法的三角形法則得到化簡得到故答案為D7、B【解析】由已知結合等比數列的性質可求出、,然后結合等比數列的求和公式求解即可.【詳解】解:由題意得:是遞增等比數列又,,故故選:B8、A【解析】根據已知條件,結合空間中平面法向量的定義,向量模長的求解,以及共線定理,對每個選項進行逐一分析,即可判斷和選擇.【詳解】因為,,,故可得,因為,故,不平行,則D錯誤;對A:不妨記向量為,則,又,不平行,故向量是平面的法向量,則A正確;對B:因為向量的模長為,其不是單位向量,故B錯誤;對C:因為,故可得,故C錯誤;故選:A.9、B【解析】根據題意,點關于直線對稱點的性質,以及橢圓的定義,即可求解.【詳解】根據題意,設點關于直線的對稱點,則,解得,即.根據橢圓的定義可知,,當、、三點共線時,長軸長取最小值,即,由且,得,因此橢圓C的短軸的最小值為.故選:B.10、C【解析】求出導數后,把x=e代入,即可求解.【詳解】因為,所以,解得故選:C11、C【解析】由題意得,直線被圓截得的弦長等于半徑.圓的圓心坐標,設圓半徑為,圓心到直線的距離為,則由條件得,整理得所以,解得.選C12、A【解析】先求出坐標,進而根據空間向量垂直的坐標運算求得答案.【詳解】因為,所以,解得.故選:A.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】設出點P的坐標,利用兩點間距離公式建立函數關系,借助二次函數計算最值作答.【詳解】橢圓的右頂點為,設點,則,即,且,于是得,因,則當時,,所以的最大值為.故答案為:14、【解析】分析得都在以為焦點的橢球上,再利用橢球的性質得到,化簡即得解.【詳解】解:因為,所以都在以為焦點橢球上,由橢球的性質得,是垂直橢球焦點所在直線的弦,的最大值為,此時共面且過中點,即故實數的取值范圍為.故答案為:15、【解析】應用基本不等式“1”的代換求a+4b的最小值即可.【詳解】由,有,則,當且僅當,且,即時等號成立,∴最小值為.故答案為:16、【解析】設,,,,分別代入雙曲線方程,兩式相減,化簡可得:,結合中點坐標公式求得直線的斜率,再利用點斜式即可求直線方程【詳解】過點的直線與該雙曲線交于,兩點,設,,,,,兩式相減可得:,因為為的中點,,,,則,所以直線的方程為,即為故答案為:【點睛】方法點睛:對于有關弦中點問題常用“點差法”,其解題步驟為:①設點(即設出弦的兩端點坐標);②代入(即代入圓錐曲線方程);③作差(即兩式相減,再用平方差公式分解因式);④整理(即轉化為斜率與中點坐標的關系式),然后求解.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)或【解析】(1)結合拋物線的定義求得,由此求得拋物線的方程.(2)設,根據三角形的面積列方程,求得的值,進而求得點的坐標.【小問1詳解】由拋物線的方程可得其準線方程,依拋物線的性質得,解得.∴拋物線的方程為.【小問2詳解】將代入,得.所以,直線的方程為,即.設,則點到直線的距離,又,由題意得,解得或.∴點的坐標是或.18、(1)(2)【解析】(1)運用橢圓的離心率公式,結合橢圓的定義可得在橢圓上,代入橢圓方程,求出,,即可求橢圓的方程;(2)設出直線方程,聯立直線和橢圓方程,利用根與系數之間的關系、以及向量數量積的坐標表示進行求解即可.【小問1詳解】依題意得,點,滿足,可得在橢圓上,可得:,且,解得,,所以橢圓的方程為;【小問2詳解】設,,,,,,當時,,此時A,B關于y軸對稱,則重心為,由得:,則,此時與橢圓不會有兩交點,故不合題意,故;聯立與橢圓方程,可得,可得,化為,,,①,設的重心,由,可得②由重心公式可得,代入②式,整理可得可得③①式代入③式并整理得,則,,令,則,可得,,,.【點睛】本題主要考查橢圓的方程以及直線和橢圓的位置關系的應用,利用消元法轉化為一元二次方程形式是解決本題的關鍵.19、(1)證明見解析;(2).【解析】(1)由菱形及線面垂直的性質可得、,再根據線面垂直的判定、性質即可證結論.(2)構建空間直角坐標系,設,結合已知確定相關點坐標,進而求面、面的法向量,結合已知二面角的余弦值求出參數t,再根據空間向量夾角的坐標表示求與平面所成角的正弦值【小問1詳解】由平面,平面,則,又是菱形,則,又,所以平面,平面所以E.【小問2詳解】分別以,,為,,軸正方向建立空間直角坐標系,設,則,由(1)知:平面的法向量為,令面的法向量為,則,令,可得,因為二面角的余弦值為,則,可得,則,設與平面所成的角為,又,,所以.20、(1);(2).【解析】(1)根據題意計算得到,得到橢圓方程.(2)設直線的方程為,聯立方程,根據韋達定理得到,,表示出,解得答案.【詳解】(1)依題意有解得所以橢圓的標準方程是.(2)由題意直線的斜率不能為,設直線的方程為,由方程組得,設,,所以,,所以,所以,令(),則,,因為在上單調遞增,所以當,即時,面積取得最大值為.【點睛】本題考查了橢圓方程,橢圓內三角形面積的最值問題,意在考查學生的計算能力和綜合應用能力.21、(1)見解析;(2).【解析】分析:依題意可知兩兩垂直,以點為原點建立空間直角坐標系,(1)利用直線的方向向量和平面的法向量垂直,即可證得線面平面;(2)求出兩個平面的法向量,利用兩個向量的夾角公式,即可求解二面角的余弦值.詳解:依條件可知、、兩兩垂直,如圖,以點為原點建立空間直角坐標系.根據條件容易求出如下各點坐標:,,,,,,,.(Ⅰ)證明:∵,,是平面的一個法向量,且,所以.又∵平面,∴平面;(Ⅱ)設是平面的法向量,因為,,由,得.解得平面的一個法向量,由已知,平面的一個法向量為,,∴二面角的余弦值是.點睛:本題考查了立體幾何中的面面垂直的判定和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論