衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題含解析_第1頁
衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題含解析_第2頁
衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題含解析_第3頁
衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題含解析_第4頁
衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

衡陽市重點中學2025屆數學高二上期末綜合測試模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列語句為命題的是()A. B.你們好!C.下雨了嗎? D.對頂角相等2.已知F為橢圓的右焦點,A為C的右頂點,B為C上的點,且垂直于x軸.若直線AB的斜率為,則橢圓C的離心率為()A. B.C. D.3.下列結論中正確的有()A.若,則 B.若,則C.若,則 D.若,則4.若兩個不同平面,的法向量分別為,,則()A.,相交但不垂直 B.C. D.以上均不正確5.若用面積為48的矩形ABCD截某圓錐得到一個橢圓,且該橢圓與矩形ABCD的四邊都相切.設橢圓的方程為,則下列滿足題意的方程為()A. B.C. D.6.如圖,直四棱柱的底面是菱形,,,M是的中點,則異面直線與所成角的余弦值為()A. B.C. D.7.已知直線與圓交于A,B兩點,O為原點,且,則實數m等于()A. B.C. D.8.如圖,在平行六面體(底面為平行四邊形的四棱柱)中,E為延長線上一點,,則為()A. B.C. D.9.為比較甲、乙兩地某月時的氣溫狀況,隨機選取該月中的天,將這天中時的氣溫數據(單位:℃)制成如圖所示的莖葉圖(十位數字為莖,個位數字為葉).考慮以下結論:①甲地該月時的平均氣溫低于乙地該月時的平均氣溫;②甲地該月時的平均氣溫高于乙地該月時的平均氣溫;③甲地該月時的氣溫的標準差小于乙地該月時的氣溫的標準差;④甲地該月時的氣溫的標準差大于乙地該月時的氣溫的標準差.其中根據莖葉圖能得到的統計結論的編號為()A.①③ B.①④C.②③ D.②④10.已知四棱柱ABCD-A1B1C1D1的底面是邊長為2的正方形,側棱與底面垂直,若點C到平面AB1D1的距離為,則直線與平面所成角的余弦值為()A. B.C. D.11.由1,2,3,4,5五個數組成沒有重復數字的五位數,其中1與2不能相鄰的排法總數為()A.20 B.36C.60 D.7212.已知實數,滿足則的最大值為()A.-1 B.0C.1 D.2二、填空題:本題共4小題,每小題5分,共20分。13.從1,3,5,7中任取2個數字,從0,2,4,6,8中任取2個數字,組成沒有重復數字的四位數,這樣的四位數一共有___________個.(用數字作答)14.已知離心率為,且對稱軸都在坐標軸上的雙曲線C過點,過雙曲線C上任意一點P,向雙曲線C的兩條漸近線分別引垂線,垂足分別是A,B,點O為坐標原點,則四邊形OAPB的面積為______15.2021年7月24日,在東京奧運會女子10米氣步槍決賽中,中國選手楊倩以251.8環的總成績奪得金牌,為中國代表團摘得本屆奧運會首金.已知楊倩其中5次射擊命中的環數如下:10.8,10.6,10.6,10.7,9.8,則這組數據的方差為______16.如圖所示,在直二面角D-AB-E中,四邊形ABCD是邊長為2的正方形,△AEB是等腰直角三角形,其中,則點D到平面ACE的距離為________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)求下列函數的導數(1);(2)18.(12分)已知等差數列的前項和為,且,(1)求數列的通項公式;(2)若數列滿足,求數列的前項和19.(12分)如圖,在四棱錐P-ABCD中,平面ABCD,,,,,.(1)證明:平面平面PAC;(2)求平面PCD與平面PAB夾角的余弦值.20.(12分)已知數列滿足,數列為等差數列,,前4項和.(1)求數列,的通項公式;(2)求和:.21.(12分)已知橢圓的左、右焦點分別為,,點在橢圓C上,且滿足(1)求橢圓C的標準方程;(2)設直線與橢圓C交于不同的兩點M,N,且(O為坐標原點).證明:總存在一個確定的圓與直線l相切,并求該圓的方程22.(10分)已知橢圓的焦點為,且長軸長是焦距的倍(1)求橢圓的標準方程;(2)若斜率為1的直線與橢圓相交于兩點,已知點,求面積的最大值

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據命題的定義判斷即可.【詳解】因為能夠判斷真假的語句叫作命題,所以ABC錯誤,D正確.故選:D2、D【解析】根據題意表示出點的坐標,再由直線AB的斜率為,列方程可求出橢圓的離心率【詳解】由題意得,,當時,,得,由題意可得點在第一象限,所以,因為直線AB的斜率為,所以,化簡得,所以,,得(舍去),或,所以離心率,故選:D3、D【解析】根據基本初等函數的導數和運算法則分別計算函數的導數,即可判斷選項.【詳解】A.若,則,故A錯誤;B.若,則,故B錯誤;C.若,則,故C錯誤;D.若,則,故D正確.故選:D4、B【解析】由向量數量積為0可求.【詳解】∵,,∴,∴,∴,故選:B.5、A【解析】由橢圓與矩形ABCD的四邊都相切得到再逐項判斷即可.【詳解】由于橢圓與矩形ABCD的四邊都相切,所以矩形兩邊長分別為,由矩形面積為48,得,對于選項B,D由于,不符合條件,不正確.對于選項A,,滿足題意.對于選項C,不正確.故選:A.6、D【解析】用向量分別表示,利用向量的夾角公式即可求解.【詳解】由題意可得,故選:D【點睛】本題主要考查用向量的夾角公式求異面直線所成的角,屬于基礎題.7、A【解析】根據給定條件求出,再求出圓O到直線l的距離即可計算作答.【詳解】圓的圓心O,半徑,因,則,而,則,即是正三角形,點O到直線l的距離,因此,,解得,所以實數m等于.故選:A8、B【解析】根據空間向量運算求得正確答案.【詳解】.故選:B9、B【解析】根據莖葉圖數據求出平均數及標準差即可【詳解】由莖葉圖知甲地該月時的平均氣溫為,標準差為由莖葉圖知乙地該月時的平均氣溫為,標準差為則甲地該月14時的平均氣溫低于乙地該月14時的平均氣溫,故①正確,乙平均氣溫的標準差小于甲的標準差,故④正確,故正確的是①④,故選:B10、A【解析】先由等面積法求得的長,再以為坐標原點,建立如圖所示的空間直角坐標系,運用線面角的向量求解方法可得答案【詳解】如圖,連接交于點,過點作于,則平面,則,設,則,則根據三角形面積得,代入解得以為坐標原點,建立如圖所示的空間直角坐標系則,,設平面的法向量為,,,則,即,令,得,所以直線與平面所成的角的余弦值為,故選:11、D【解析】先排3,4,5,然后利用插空法在4個位置上選2個排1,2.【詳解】先排3,4,5,,共有種排法,然后在4個位置上選2個排列1,2,有種排法,則1與2不能相鄰的排法總數為種,故選:D.12、D【解析】由約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,把最優解的坐標代入目標函數,即可得到結果【詳解】由約束條件畫出可行域如圖,化目標函數為,由圖可知當直線過點時,直線在軸上的截距最小,取得最大值2.故選:D二、填空題:本題共4小題,每小題5分,共20分。13、1296【解析】根據取出的數字是否含有零,分類討論,若不含零,則有四位數個,若含有零,則有四位數個,再根據分類加法計數原理即可求出【詳解】若取出的數字中不含零,則有四位數個;若取出的數字中含零,則有四位數個;所以,這樣的四位數有個故答案為:129614、2【解析】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,可得雙曲線方程為,設,則到兩漸近線的距離為,,從而可求四邊形的面積【詳解】由離心率為,∴雙曲線為等軸雙曲線,設雙曲線方程為,又雙曲線過點,,∴,故雙曲線方程為,∴漸近線方程為,設,則到兩漸近線的距離為,,且,∵漸近線方程為,∴四邊形為矩形,∴四邊形的面積為故答案為:215、128【解析】先求均值,再由方差公式計算【詳解】由已知,所以,故答案為:16、【解析】建立合適空間直角坐標系,分別表示出點的坐標,然后求解出平面的一個法向量,利用公式求解出點到平面的距離.【詳解】以AB的中點O為坐標原點,分別以OE,OB所在的直線為x軸、y軸,過垂直于平面的方向為軸,建立如下圖所示的空間直角坐標系,則,,設平面ACE的法向量,則,即,令,∴故點D到平面ACE的距離.故答案:.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)見解析【解析】(1)導數四則運算中的乘除法則.(2)求導數,主要考查復合函數,外導乘內導.【小問1詳解】【小問2詳解】.18、(1);(2).【解析】(1)設等差數列的公差為,根據已知條件可得出關于、的方程組,解出這兩個量的值,即可求得數列的通項公式;(2)求得,利用裂項相消法可求得.【小問1詳解】解:設等差數列公差為,,【小問2詳解】解:,.19、(1)證明見解析(2)【解析】(1)過點C作于點H,由平面幾何知識證明,然后由線面垂直的性質得線線垂直,從而得線面垂直,然后可得面面垂直;(2)建立如圖所示的空間直角坐標系,用空間向量法求二面角【小問1詳解】在梯形ABCD中,過點C作于點H.由,,,,可知,,,.所以,即,①因為平面ABCD,平面ABCD,所以,②由①②及,平面PAC,得平面PAC.又由平面PCD,所以平面平面PAC.【小問2詳解】因為AB,AD,AP兩兩垂直,所以以A為原點,以AB,AD,AP所在的直線分別為x,y,z軸建立空間直角坐標系,可得A(0,0,0),B(1,0,0),C(1,1,0),D(0,2,0),P(0,0,3),,.設平面PCD的法向量為,則,取,則,,則.平面PAB的一個法向量為,所以,所以平面PCD與平面PAB所成的銳二面角的余弦值為.20、(1),;(2).【解析】(1)根據等比數列的定義,結合等差數列的基本量,即可容易求得數列,的通項公式;(2)根據(1)中所求,構造數列,證明其為等比數列,利用等比數列的前項和即可求得結果.【小問1詳解】因為數列滿足,故可得數列為等比數列,且公比,則;數列為等差數列,,前4項和,設其公差為,故可得,解得,則;綜上所述,,.【小問2詳解】由(1)可知:,,故,又,又,則是首項1,公比為的等比數列;則.21、(1);(2)理由見解析,圓的方程為.【解析】(1)根據給定條件可得,結合勾股定理、橢圓定義求出a,b得解.(2)聯立直線l與橢圓C的方程,利用給定條件求出k,m的關系,再求出原點O到直線l的距離即可推理作答.【小問1詳解】因,則,點在橢圓C上,則橢圓C的半焦距,,,因此,,解得,,所以橢圓C的標準方程是:.【小問2詳解】由消去y并整理得:,依題意,,設,,因,則,于是得,此時,,則原點O到直線l的距離,所以,存在以原點O為圓心,為半徑的圓與直線l相切,此圓的方程為.【點睛】思路點睛:涉及動直線與圓錐曲線相交滿足某個條件問題,可設直線方程為,再與圓錐曲線方程聯立結合已知條件探求k,m的關系,然后推理求解.22、(1);(2)1.【解析】(1)根據給定

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論