




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省滁州市第一中學數學高二上期末預測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.直線被圓所截得的弦長為()A. B.C. D.2.已知直線,橢圓.若直線l與橢圓C交于A,B兩點,則線段AB的中點的坐標為()A. B.C. D.3.已知命題“若,則”,命題“若,則”,則下列命題中為真命題的是()A. B.C. D.4.若將一個橢圓繞其中心旋轉90°,所得橢圓短軸兩頂點恰好是旋轉前橢圓的兩焦點,這樣的橢圓稱為“對偶橢圓”,下列橢圓中是“對偶橢圓”的是()A. B.C. D.5.若直線與圓:相切,則()A.-2 B.-2或6C.2 D.-6或26.如果在一實驗中,測得的四組數值分別是,則y與x之間的回歸直線方程是()A. B.C. D.7.若的解集是,則等于()A.-14 B.-6C.6 D.148.音樂與數學有著密切的聯系,我國春秋時期有個著名的“三分損益法”:以“宮”為基本音,“宮”經過一次“損”,頻率變為原來的,得到“微”,“微”經過一次“益”,頻率變為原來的,得到“商”……依此規律損益交替變化,獲得了“宮”“微”“商”“羽”“角”五個音階.據此可推得()A.“商”“羽”“角”的頻率成公比為的等比數列B.“宮”“微”“商”的頻率成公比為的等比數列C.“宮”“商”“角”的頻率成公比為的等比數列D.“角”“商”“宮”的頻率成公比為的等比數列9.等差數列中,,則()A. B.C. D.10.設集合,集合,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.命題P:ax2+2x﹣1=0有實數根,若¬p是假命題,則實數a的取值范圍是()A.{a|a<1} B.{a|a≤﹣1}C.{a|a≥﹣1} D.{a|a>﹣1}12.下圖是一個“雙曲狹縫”模型,直桿沿著與它不平行也不相交的軸旋轉時形成雙曲面,雙曲面的邊緣為雙曲線.已知該模型左、右兩側的兩段曲線(曲線AB與曲線CD)所在的雙曲線離心率為2,曲線AB與曲線CD中間最窄處間的距離為10cm,點A與點C,點B與點D均關于該雙曲線的對稱中心對稱,且|AB|=30cm,則|AD|=()A.10cm B.20cmC.25cm D.30cm二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,,若,,使得,則實數a的取值范圍是______14.給定點、、與點,求點到平面的距離______.15.已知圓,過點作圓O的切線,則切線方程為___________.16.若不同的平面的一個法向量分別為,,則與的位置關系為___________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點為F,右頂點為,M是橢圓上一點.軸且(1)求橢圓C的標準方程;(2)直線與橢圓C交于E,H兩點,點G在橢圓C上,且四邊形平行四邊形(其中O為坐標原點),求18.(12分)直線:和:(1)若兩直線垂直,求m的值;(2)若兩直線平行,求平行線間的距離19.(12分)從①;②;③這三個條件中任選一個,補充在下面問題中,并作答設等差數列的前n項和為,,______;設數列的前n項和為,(1)求數列和的通項公式;(2)求數列的前項和注:作答前請先指明所選條件,如果選擇多個條件分別解答,按第一個解答計分20.(12分)如圖,在三棱錐中,側面PBC是邊長為2的等邊三角形,M,N分別為AB,AP的中點.過MN的平面與側面PBC交于EF(1)求證:;(2)若平面平面ABC,,求直線PB與平面PAC所成角的正弦值21.(12分)已知圓C的圓心在y軸上,且過點,(1)求圓C的方程;(2)已知圓C上存在點M,使得三角形MAB的面積為,求點M的坐標22.(10分)如圖,△ABC中,,,在三角形內挖去一個半圓(圓心O在邊BC上,半圓與AC、AB分別相切于點C,M,與BC交于點N),將△ABC繞直線BC旋轉一周得到一個旋轉體(1)求該幾何體中間一個空心球表面積的大小;(2)求圖中陰影部分繞直線BC旋轉一周所得旋轉體的體積
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】求得圓心坐標和半徑,結合點到直線的距離公式和圓的弦長公式,即可求解.【詳解】由圓的方程可知圓心為,半徑為,圓心到直線的距離,所以弦長為.故選:A.2、B【解析】聯立直線方程與橢圓方程,消y得到關于x的一元二次方程,根據韋達定理可得,進而得出中點的橫坐標,代入直線方程求出中點的縱坐標即可.【詳解】由題意知,,消去y,得,則,,所以A、B兩點中點的橫坐標為:,所以中點的縱坐標為:,即線段AB的中點的坐標為.故選:B3、D【解析】利用指數函數的單調性可判斷命題的真假,利用特殊值法可判斷命題的真假,結合復合命題的真假可判斷出各選項中命題的真假.【詳解】對于命題,由于函數為上的增函數,當時,,命題為真命題;對于命題,若,取,,則,命題為假命題.所以,、、均為假命題,為真命題.故選:D.【點睛】本題考查簡單命題和復合命題真假的判斷,考查推理能力,屬于基礎題.4、A【解析】由題意可得,所給的橢圓中的,的值求出的值,進而判斷所給命題的真假【詳解】解:因為橢圓短的軸兩頂點恰好是旋轉前橢圓的兩焦點,即,即,中,,,所以,故,所以正確;中,,,所以,所以不正確;中,,,所以,所以不正確;中,,,所以,所以不正確;故選:5、B【解析】利用圓心到直線距離等于半徑得到方程,解出的值.【詳解】圓心為,半徑為,由題意得:,解得:或6.故選:B6、B【解析】根據已知數據求樣本中心點,由樣本中心點在回歸直線上,將其代入各選項的回歸方程驗證即可.【詳解】由題設,,因為回歸直線方程過樣本點中心,A:,排除;B:,滿足;C:,排除;D:,排除.故選:B7、A【解析】由一元二次不等式的解集,結合根與系數關系求參數a、b,即可得.【詳解】∵的解集為,∴-5和2為方程的兩根,∴有,解得,∴.故選:A.8、C【解析】根據文化知識,分別求出相對應的頻率,即可判斷出結果【詳解】設“宮”的頻率為a,由題意經過一次“損”,可得“徵”的頻率為a,“徵”經過一次“益”,可得“商”的頻率為a,“商”經過一次“損”,可得“羽”頻率為a,最后“羽”經過一次“益”,可得“角”的頻率是a,由于a,a,a成等比數列,所以“宮、商、角”的頻率成等比數列,且公比為,故選:C【點睛】本題考查等比數列的定義,考查學生的運算能力和轉換能力及思維能力,屬于基礎題9、C【解析】由等差數列的前項和公式和性質進行求解.【詳解】由題意,得.故選:C.10、A【解析】解不等式求集合,然后判斷兩個集合的關系【詳解】,解得,故,可化為或,解得或,故,故“”是“”的充分不必要條件故選:A11、C【解析】根據是假命題,判斷出是真命題.對分成,和兩種情況,結合方程有實數根,求得的取值范圍.詳解】┐p是假命題,則p是真命題,∴ax2+2x﹣1=0有實數根,當a=0時,方程為2x﹣1=0,解得x=0.5,有根,符合題意;當a≠0時,方程有根,等價于△=4+4a≥0,∴a≥﹣1且,綜上所述,a的可能取值為a≥﹣1故選:C【點睛】本小題主要考查根據命題否定的真假性求參數,屬于基礎題.12、B【解析】由離心率求出雙曲線方程,由對稱性設出點A,B,D坐標,求出坐標,求出答案.【詳解】由題意得:,解得:,因為離心率,所以,,故雙曲線方程為,設,則,,則,所以,則,解得:,故.故選:B二、填空題:本題共4小題,每小題5分,共20分。13、【解析】先求出兩函數在上的值域,再由已知條件可得,且,列不等式組可求得結果【詳解】由,得,當時,,所以在上單調遞減,所以,即,由,得,當時,,所以在上單調遞增,所以,即,因為,,使得,所以,解得,故答案為:14、【解析】先求出平面的法向量,再利用點到面的距離公式計算即可.【詳解】設平面的法向量為,點到平面的距離為,,,即,令,得故答案為:.15、或【解析】首先判斷點圓位置關系,再設切線方程并聯立圓的方程,根據所得方程求參數k,即可寫出切線方程.【詳解】由題設,,故在圓外,根據圓及,知:過作圓O的切線斜率一定存在,∴可設切線為,聯立圓的方程,整理得,∴,解得或.∴切線方程為或.故答案為:或.16、平行【解析】根據題意得到,得出,即可得到平面與的位置關系.【詳解】由題意,平面的一個法向量分別為,,可得,所以,所以,即平面與的位置關系為平行.故答案為:平行三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】(1)根據橢圓的簡單幾何性質即可求出;(2)設,聯立與橢圓方程,求出,再根據平行四邊形的性質求出點的坐標,然后由點G在橢圓C上,可求出,從而可得【小問1詳解】∵橢圓C的右頂點為,∴,∵軸,且,∴,∴,所以橢圓C的標準方程為【小問2詳解】設,將直線代入,消去y并整理得,由,得.(*)由根與系數的關系可得,∴,∵四邊形為平行四邊形,∴,得,將G點坐標代人橢圓C的方程得,滿足(*)式∴18、(1);(2)【解析】(1)由直線一般方程的垂直公式,即得解;(2)由直線一般方程的平行公式,求得,再由平行線的距離公式,即得解.【小問1詳解】∵兩直線垂直,∴,解得【小問2詳解】∵兩直線平行,∴,解得或1,經過驗證時兩條直線重合,舍去.∴可得:直線:,:∴兩直線間的距離19、(1)條件選擇見解析,,(2)【解析】(1)設數列的首項為,公差為d,選①由求解;選②由求解;選③由求解;則,由,利用數列通項與前n項和公式求解;(2)易知,再利用錯位相減法求解.【小問1詳解】解:設數列的首項為,公差為d,選①得,則,選②得,則,選③得,則,所以數列的通項公式為因為,所以當時,,則當時,,則,所以是以首項為2,公比為2的等比數列,所以【小問2詳解】因為,所以數列的前n項和①②①-②得∴,則20、(1)證明見解析(2)【解析】(1)由題意先證明平面PBC,然后由線面平行的性質定理可證明.(2)由平面平面ABC,取BC中點O,則平面ABC,可得,由條件可得,以O坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,利用向量法求解即可.【小問1詳解】因為M,N分別為AB,AP的中點,所以,又平面PBC,所以平面PBC,因為平面平面,所以【小問2詳解】因為平面平面ABC,取BC中點O,連接PO,AO,因為是等邊三角形,所以,所以平面ABC,故,又因,所以,以O為坐標原點,分別以OB,AO,OP為x,y,z軸建立空間直角坐標系,可得:,,,,,所以,,,設平面PAC的法向量為,則,則,令,得,,所以,所以直線PB與平面PAC所成角的正弦值為21、(1);(2)或.【解析】(1)兩點式求AB所在直線的斜率,結合點坐標求AB的垂直平分線,根據已知確定圓心、半徑即可得圓C的方程;(2)求AB所在直線方程,幾何關系求弦長,由三角形面積求點線距離,設M所在直線為,由點線距離公式列方程求參數,進而聯立直線與圓C求M的坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江西省南昌市省重點中學2025年高三年級第二次校模擬考試英語試題含解析
- 遼寧省鳳城市2024-2025學年高三第二次教學質量監測數學試題含解析
- 云南省昆明市云南師大附小2025年數學五年級第二學期期末教學質量檢測試題含答案
- 九師聯盟2024-2025學年高三下學期期末考試(1月)英語試題含解析
- 智慧農業技術與農村教育融合探討
- 短期工作合同書范本
- 住宅裝修施工合同安全條款范例2025
- 統編版三年級語文下冊第三單元測試卷(A)(含答案)
- 國際供應鏈鋪貨合同協議
- 預制構件購銷合同范本
- 醫學倫理學人衛試題(附參考答案)
- 2024詩詞大會100題題庫(含答案)
- 超市專用棚架搭建方案
- 安全隱患排查和治理制度
- 【初中物理】凸透鏡成像規律+-2024-2025學年人教版物理八年級上冊
- 2024年應急預案知識考試題庫及答案(共60題)
- 二年級下冊數學口算綜合練習題 (每頁100題)
- 安全生產法律法規知識培訓課件
- 湖北公務員面試模擬64
- 信息安全意識培訓課件
- 人教版數學八年級上冊:14-整式的乘法與因式分解-專題練習(附答案)
評論
0/150
提交評論