




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆河南省信陽市示范名校數學高三第一學期期末復習檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值2.下列函數中,在區間上為減函數的是()A. B. C. D.3.若sin(α+3π2A.-12 B.-134.已知隨機變量服從正態分布,且,則()A. B. C. D.5.已知等差數列的前項和為,若,,則數列的公差為()A. B. C. D.6.已知函數是上的減函數,當最小時,若函數恰有兩個零點,則實數的取值范圍是()A. B.C. D.7.設函數,若在上有且僅有5個零點,則的取值范圍為()A. B. C. D.8.已知函數,,其中為自然對數的底數,若存在實數,使成立,則實數的值為()A. B. C. D.9.若,則的虛部是()A. B. C. D.10.函數的圖象在點處的切線為,則在軸上的截距為()A. B. C. D.11.已知排球發球考試規則:每位考生最多可發球三次,若發球成功,則停止發球,否則一直發到次結束為止.某考生一次發球成功的概率為,發球次數為,若的數學期望,則的取值范圍為()A. B. C. D.12.下列說法正確的是()A.“若,則”的否命題是“若,則”B.“若,則”的逆命題為真命題C.,使成立D.“若,則”是真命題二、填空題:本題共4小題,每小題5分,共20分。13.設、滿足約束條件,若的最小值是,則的值為__________.14.已知,則________.(填“>”或“=”或“<”).15.已知,,分別為內角,,的對邊,,,,則的面積為__________.16.某地區連續5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數據的標準差為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.18.(12分)已知函數,其中e為自然對數的底數.(1)討論函數的單調性;(2)用表示中較大者,記函數.若函數在上恰有2個零點,求實數a的取值范圍.19.(12分)已知命題:,;命題:函數無零點.(1)若為假,求實數的取值范圍;(2)若為假,為真,求實數的取值范圍.20.(12分)已知函數()(1)函數在點處的切線方程為,求函數的極值;(2)當時,對于任意,當時,不等式恒成立,求出實數的取值范圍.21.(12分)下表是某公司2018年5~12月份研發費用(百萬元)和產品銷量(萬臺)的具體數據:月份56789101112研發費用(百萬元)2361021131518產品銷量(萬臺)1122.563.53.54.5(Ⅰ)根據數據可知與之間存在線性相關關系,求出與的線性回歸方程(系數精確到0.01);(Ⅱ)該公司制定了如下獎勵制度:以(單位:萬臺)表示日銷售,當時,不設獎;當時,每位員工每日獎勵200元;當時,每位員工每日獎勵300元;當時,每位員工每日獎勵400元.現已知該公司某月份日銷售(萬臺)服從正態分布(其中是2018年5-12月產品銷售平均數的二十分之一),請你估計每位員工該月(按30天計算)獲得獎勵金額總數大約多少元.參考數據:,,,,參考公式:相關系數,其回歸直線中的,若隨機變量服從正態分布,則,.22.(10分)在三角形ABC中,角A,B,C的對邊分別為a,b,c,若,角為鈍角,(1)求的值;(2)求邊的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.2、C【解析】
利用基本初等函數的單調性判斷各選項中函數在區間上的單調性,進而可得出結果.【詳解】對于A選項,函數在區間上為增函數;對于B選項,函數在區間上為增函數;對于C選項,函數在區間上為減函數;對于D選項,函數在區間上為增函數.故選:C.【點睛】本題考查函數在區間上單調性的判斷,熟悉一些常見的基本初等函數的單調性是判斷的關鍵,屬于基礎題.3、B【解析】
由三角函數的誘導公式和倍角公式化簡即可.【詳解】因為sinα+3π2=3故選B【點睛】本題考查了三角函數的誘導公式和倍角公式,靈活掌握公式是關鍵,屬于基礎題.4、C【解析】
根據在關于對稱的區間上概率相等的性質求解.【詳解】,,,.故選:C.【點睛】本題考查正態分布的應用.掌握正態曲線的性質是解題基礎.隨機變量服從正態分布,則.5、D【解析】
根據等差數列公式直接計算得到答案.【詳解】依題意,,故,故,故,故選:D.【點睛】本題考查了等差數列的計算,意在考查學生的計算能力.6、A【解析】
首先根據為上的減函數,列出不等式組,求得,所以當最小時,,之后將函數零點個數轉化為函數圖象與直線交點的個數問題,畫出圖形,數形結合得到結果.【詳解】由于為上的減函數,則有,可得,所以當最小時,,函數恰有兩個零點等價于方程有兩個實根,等價于函數與的圖像有兩個交點.畫出函數的簡圖如下,而函數恒過定點,數形結合可得的取值范圍為.故選:A.【點睛】該題考查的是有關函數的問題,涉及到的知識點有分段函數在定義域上單調減求參數的取值范圍,根據函數零點個數求參數的取值范圍,數形結合思想的應用,屬于中檔題目.7、A【解析】
由求出范圍,結合正弦函數的圖象零點特征,建立不等量關系,即可求解.【詳解】當時,,∵在上有且僅有5個零點,∴,∴.故選:A.【點睛】本題考查正弦型函數的性質,整體代換是解題的關鍵,屬于基礎題.8、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是減函數,(﹣1,+∞)上是增函數,故當x=﹣1時,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(當且僅當ex﹣a=4ea﹣x,即x=a+ln1時,等號成立);故f(x)﹣g(x)≥3(當且僅當等號同時成立時,等號成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故選:A.9、D【解析】
通過復數的乘除運算法則化簡求解復數為:的形式,即可得到復數的虛部.【詳解】由題可知,所以的虛部是1.故選:D.【點睛】本題考查復數的代數形式的混合運算,復數的基本概念,屬于基礎題.10、A【解析】
求出函數在處的導數后可得曲線在處的切線方程,從而可求切線的縱截距.【詳解】,故,所以曲線在處的切線方程為:.令,則,故切線的縱截距為.故選:A.【點睛】本題考查導數的幾何意義以及直線的截距,注意直線的縱截距指直線與軸交點的縱坐標,因此截距有正有負,本題屬于基礎題.11、A【解析】
根據題意,分別求出再根據離散型隨機變量期望公式進行求解即可【詳解】由題可知,,,則解得,由可得,答案選A【點睛】本題考查離散型隨機變量期望的求解,易錯點為第三次發球分為兩種情況:三次都不成功、第三次成功12、D【解析】選項A,否命題為“若,則”,故A不正確.選項B,逆命題為“若,則”,為假命題,故B不正確.選項C,由題意知對,都有,故C不正確.選項D,命題的逆否命題“若,則”為真命題,故“若,則”是真命題,所以D正確.選D.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
畫出滿足條件的平面區域,求出交點的坐標,由得,顯然直線過時,最小,代入求出的值即可.【詳解】作出不等式組所表示的可行域如下圖所示:聯立,解得,則點.由得,顯然當直線過時,該直線軸上的截距最小,此時最小,,解得.故答案為:.【點睛】本題考查了簡單的線性規劃問題,考查數形結合思想,是一道中檔題.14、【解析】
注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.【點睛】本題考查對數式比較大小,涉及到換底公式的應用,考查學生的數學運算能力,是一道中檔題.15、【解析】
根據題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.16、【解析】
先求出這組數據的平均數,再求出這組數據的方差,由此能求出該組數據的標準差.【詳解】解:某地區連續5天的最低氣溫(單位:依次為8,,,0,2,平均數為:,該組數據的方差為:,該組數據的標準差為1.故答案為:1.【點睛】本題考查一組數據據的標準差的求法,考查平均數、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據求出的值.最后直線與直線的方程聯立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.18、(1)函數的單調遞增區間為和,單調遞減區間為;(2).【解析】
(1)由題可得,結合的范圍判斷的正負,即可求解;(2)結合導數及函數的零點的判定定理,分類討論進行求解【詳解】(1),①當時,,∴函數在內單調遞增;②當時,令,解得或,當或時,,則單調遞增,當時,,則單調遞減,∴函數的單調遞增區間為和,單調遞減區間為(2)(Ⅰ)當時,所以在上無零點;(Ⅱ)當時,,①若,即,則是的一個零點;②若,即,則不是的零點(Ⅲ)當時,,所以此時只需考慮函數在上零點的情況,因為,所以①當時,在上單調遞增。又,所以(ⅰ)當時,在上無零點;(ⅱ)當時,,又,所以此時在上恰有一個零點;②當時,令,得,由,得;由,得,所以在上單調遞減,在上單調遞增,因為,,所以此時在上恰有一個零點,綜上,【點睛】本題考查利用導數求函數單調區間,考查利用導數處理零點個數問題,考查運算能力,考查分類討論思想19、(1)(2)【解析】
(1)為假,則為真,求導,利用導函數研究函數有零點條件得的取值范圍;(2)由為假,為真,知一真一假;分類討論列不等式組可解.【詳解】(1)依題意,為真,則無解,即無解;令,則,故當時,,單調遞增,當,,單調遞減,作出函數圖象如下所示,觀察可知,,即;(2)若為真,則,解得;由為假,為真,知一真一假;若真假,則實數滿足,則;若假真,則實數滿足,無解;綜上所述,實數的取值范圍為.【點睛】本題考查根據全(特)稱命題的真假求參數的問題.其思路:與全稱命題或特稱命題真假有關的參數取值范圍問題的本質是恒成立問題或有解問題.解決此類問題時,一般先利用等價轉化思想將條件合理轉化,得到關于參數的方程或不等式(組),再通過解方程或不等式(組)求出參數的值或范圍.20、(1)極小值為,極大值為.(2)【解析】
(1)根據斜線的斜率即可求得參數,再對函數求導,即可求得函數的極值;(2)根據題意,對目標式進行變形,構造函數,根據是單調減函數,分離參數,求函數的最值即可求得結果.【詳解】(1)函數的定義域為,,,,可知,,解得,,可知在,時,,函數單調遞增,在時,,函數單調遞減,可知函數的極小值為,極大值為.(2)可以變形為,可得,可知函數在上單調遞減,,可得,設,,可知函數在單調遞減,,可知,可知參數的取值范圍為.【點睛】本題考查由切線的斜率求參數的值,以及對具體函數極值的求解,涉及構造函數法,以及利用導數求函數的值域;第二問的難點在于對目標式的變形,屬綜合性中檔題.21、(Ⅰ)(Ⅱ)7839.3元【解析】
(Ⅰ)由題意計算x、y的平均值,進而由公式求出回歸系數b和a,即可寫出回歸直線方程;(Ⅱ)由題意計算平均數μ,得出z~N(μ,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 員工心態管理課程
- 支氣管哮喘課件
- 2025屆海南省東方市民族中學高考英語一模試卷含答案
- 1+x母嬰模擬試題及參考答案
- 網店運營基礎考試模擬題(含參考答案)
- 盾構機施工中的隧道工程地質問題識別考核試卷
- 農藥減量使用技術考核試卷
- 紡織品在家居收納中的應用考核試卷
- 2025年高三高考沖刺主題教育班會:《高三考前心理調適指南:減壓賦能 輕松備考》-2024-2025學年高中主題班會課件
- 植物油加工設備與工藝流程考核試卷
- 2025年安全生產考試題庫(消防安全應急處置)消防設施運行維護試題
- 2025年臨海市紀委市監委下屬事業單位公開選聘工作人員1人筆試備考題庫及答案解析
- 電臺項目可行性研究報告
- 2025年度事業單位招聘考試公共基礎知識仿真模擬試卷及答案(共五套)
- 2025年廣西壯族自治區南寧市中考一模生物試題(含答案)
- 長江流域大水面生態漁業的發展現狀與發展潛力分析
- MOOC 理解馬克思-南京大學 中國大學慕課答案
- 13 荷葉圓圓說課課件(共17張PPT)
- 環己烷安全周知卡-原料
- 三寶證盟薦亡往生功德文疏
- YY∕T 1849-2022 重組膠原蛋白
評論
0/150
提交評論