




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖南省長沙市長郡教育集團2023-2024學年中考五模數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.點A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函數的圖象上,且x1<x2<0<x3,則y1、y2、y3的大小關系是()A.y3<y1<y2 B.y1<y2<y3 C.y3<y2<y1 D.y2<y1<y32.在△ABC中,若=0,則∠C的度數是()A.45° B.60° C.75° D.105°3.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°4.如圖,已知點A、B、C、D在⊙O上,圓心O在∠D內部,四邊形ABCO為平行四邊形,則∠DAO與∠DCO的度數和是()A.60° B.45° C.35° D.30°5.李老師為了了解學生暑期在家的閱讀情況,隨機調查了20名學生某一天的閱讀小時數,具體情況統計如下:閱讀時間(小時)22.533.54學生人數(名)12863則關于這20名學生閱讀小時數的說法正確的是()A.眾數是8 B.中位數是3C.平均數是3 D.方差是0.346.如圖,在正八邊形ABCDEFGH中,連接AC,AE,則的值是()A.1 B. C.2 D.7.直線y=3x+1不經過的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.將拋物線y=x2先向左平移2個單位,再向下平移3個單位后所得拋物線的解析式為()A.y=(x﹣2)2+3B.y=(x﹣2)2﹣3C.y=(x+2)2+3D.y=(x+2)2﹣39.兩個同心圓中大圓的弦AB與小圓相切于點C,AB=8,則形成的圓環的面積是()A.無法求出 B.8 C.8 D.1610.義安區某中學九年級人數相等的甲、乙兩班學生參加同一次數學測試,兩班平均分和方差分別為甲=89分,乙=89分,S甲2=195,S乙2=1.那么成績較為整齊的是()A.甲班 B.乙班 C.兩班一樣 D.無法確定11.實數在數軸上的點的位置如圖所示,則下列不等關系正確的是()A.a+b>0 B.a-b<0 C.<0 D.>12.人的大腦每天能記錄大約8600萬條信息,數據8600用科學記數法表示為()A.0.86×104 B.8.6×102 C.8.6×103 D.86×102二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,E是?ABCD的邊AD上一點,AE=1214.如圖,在邊長為4的菱形ABCD中,∠A=60°,M是AD邊的中點,點N是AB邊上一動點,將△AMN沿MN所在的直線翻折得到△A′MN,連接A′C,則線段A′C長度的最小值是______.15.如圖,甲和乙同時從學校放學,兩人以各自送度勻速步行回家,甲的家在學校的正西方向,乙的家在學校的正東方向,乙家離學校的距離比甲家離學校的距離遠3900米,甲準備一回家就開始做什業,打開書包時發現錯拿了乙的練習冊.于是立即步去追乙,終于在途中追上了乙并交還了練習冊,然后再以先前的速度步行回家,(甲在家中耽擱和交還作業的時間忽略不計)結果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學校出發的時間x分鐘的函數關系圖,則甲的家和乙的家相距_____米.16.拋物線y=x2﹣4x+與x軸的一個交點的坐標為(1,0),則此拋物線與x軸的另一個交點的坐標是______.17.已知點A(2,0),B(0,2),C(-1,m)在同一條直線上,則m的值為___________.18.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知AB是⊙O的直徑,弦CD與AB相交,∠BAC=40°.(1)如圖1,若D為弧AB的中點,求∠ABC和∠ABD的度數;(2)如圖2,過點D作⊙O的切線,與AB的延長線交于點P,若DP∥AC,求∠OCD的度數.20.(6分)某校計劃購買籃球、排球共20個.購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同.籃球和排球的單價各是多少元?若購買籃球不少于8個,所需費用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案.21.(6分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.22.(8分)如圖,是一座古拱橋的截面圖,拱橋橋洞的上沿是拋物線形狀,當水面的寬度為10m時,橋洞與水面的最大距離是5m.經過討論,同學們得出三種建立平面直角坐標系的方案(如圖),你選擇的方案是(填方案一,方案二,或方案三),則B點坐標是,求出你所選方案中的拋物線的表達式;因為上游水庫泄洪,水面寬度變為6m,求水面上漲的高度.23.(8分)已知如圖,在△ABC中,∠B=45°,點D是BC邊的中點,DE⊥BC于點D,交AB于點E,連接CE.(1)求∠AEC的度數;(2)請你判斷AE、BE、AC三條線段之間的等量關系,并證明你的結論.24.(10分)小晗家客廳裝有一種三位單極開關,分別控制著A(樓梯)、B(客廳)、C(走廊)三盞電燈,在正常情況下,小晗按下任意一個開關均可打開對應的一盞電燈,既可三盞、兩盞齊開,也可分別單盞開.因剛搬進新房不久,不熟悉情況.若小晗任意按下一個開關,正好樓梯燈亮的概率是多少?若任意按下一個開關后,再按下另兩個開關中的一個,則正好客廳燈和走廊燈同時亮的概率是多少?請用樹狀圖或列表法加以說明.25.(10分)計算:|﹣1|+﹣(1﹣)0﹣()﹣1.26.(12分)如圖所示,AB是⊙O的直徑,AE是弦,C是劣弧AE的中點,過C作CD⊥AB于點D,CD交AE于點F,過C作CG∥AE交BA的延長線于點G.求證:CG是⊙O的切線.求證:AF=CF.若sinG=0.6,CF=4,求GA的長.27.(12分)如圖1,定義:在直角三角形ABC中,銳角α的鄰邊與對邊的比叫做角α的余切,記作ctanα,即ctanα=角α的鄰邊角(1)如圖1,若BC=3,AB=5,則ctanB=_____;(2)ctan60°=_____;(3)如圖2,已知:△ABC中,∠B是銳角,ctanC=2,AB=10,BC=20,試求∠B的余弦cosB的值.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】
作出反比例函數的圖象(如圖),即可作出判斷:∵-3<1,∴反比例函數的圖象在二、四象限,y隨x的增大而增大,且當x<1時,y>1;當x>1時,y<1.∴當x1<x2<1<x3時,y3<y1<y2.故選A.2、C【解析】
根據非負數的性質可得出cosA及tanB的值,繼而可得出A和B的度數,根據三角形的內角和定理可得出∠C的度數.【詳解】由題意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故選C.3、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.4、A【解析】試題解析:連接OD,∵四邊形ABCO為平行四邊形,∴∠B=∠AOC,∵點A.B.C.D在⊙O上,由圓周角定理得,解得,∵OA=OD,OD=OC,∴∠DAO=∠ODA,∠ODC=∠DCO,故選A.點睛:在同圓或等圓中,同弧或等弧所對的圓周角等于圓心角的一半.5、B【解析】
A、根據眾數的定義找出出現次數最多的數;B、根據中位數的定義將這組數據從小到大重新排列,求出最中間的2個數的平均數,即可得出中位數;C、根據加權平均數公式代入計算可得;D、根據方差公式計算即可.【詳解】解:A、由統計表得:眾數為3,不是8,所以此選項不正確;B、隨機調查了20名學生,所以中位數是第10個和第11個學生的閱讀小時數,都是3,故中位數是3,所以此選項正確;C、平均數=,所以此選項不正確;D、S2=×[(2﹣3.35)2+2(2.5﹣3.35)2+8(3﹣3.35)2+6(3.5﹣3.35)2+3(4﹣3.35)2]==0.2825,所以此選項不正確;故選B.【點睛】本題考查方差;加權平均數;中位數;眾數.6、B【解析】
連接AG、GE、EC,易知四邊形ACEG為正方形,根據正方形的性質即可求解.【詳解】解:連接AG、GE、EC,則四邊形ACEG為正方形,故=.故選:B.【點睛】本題考查了正多邊形的性質,正確作出輔助線是關鍵.7、D【解析】
利用兩點法可畫出函數圖象,則可求得答案.【詳解】在y=3x+1中,令y=0可得x=-,令x=0可得y=1,∴直線與x軸交于點(-,0),與y軸交于點(0,1),其函數圖象如圖所示,∴函數圖象不過第四象限,故選:D.【點睛】本題主要考查一次函數的性質,正確畫出函數圖象是解題的關鍵.8、D【解析】
先得到拋物線y=x2的頂點坐標(0,0),再根據點平移的規律得到點(0,0)平移后的對應點的坐標為(-2,-1),然后根據頂點式寫出平移后的拋物線解析式.【詳解】解:拋物線y=x2的頂點坐標為(0,0),把點(0,0)先向左平移2個單位,再向下平移1個單位得到對應點的坐標為(-2,-1),所以平移后的拋物線解析式為y=(x+2)2-1.故選:D.【點睛】本題考查了二次函數與幾何變換:由于拋物線平移后的形狀不變,故a不變,所以求平移后的拋物線解析式通常可利用兩種方法:一是求出原拋物線上任意兩點平移后的坐標,利用待定系數法求出解析式;二是只考慮平移后的頂點坐標,即可求出解析式.9、D【解析】試題分析:設AB于小圓切于點C,連接OC,OB.∵AB于小圓切于點C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圓環(陰影)的面積=π?OB2-π?OC2=π(OB2-OC2)=π?BC2=16π.故選D.考點:1.垂徑定理的應用;2.切線的性質.10、B【解析】
根據方差的意義,方差反映了一組數據的波動大小,故可由兩人的方差得到結論.【詳解】∵S甲2>S乙2,∴成績較為穩定的是乙班。故選:B.【點睛】本題考查了方差,解題的關鍵是掌握方差的概念進行解答.11、C【解析】
根據點在數軸上的位置,可得a,b的關系,根據有理數的運算,可得答案.【詳解】解:由數軸,得b<-1,0<a<1.A、a+b<0,故A錯誤;B、a-b>0,故B錯誤;C、<0,故C符合題意;D、a2<1<b2,故D錯誤;故選C.【點睛】本題考查了實數與數軸,利用點在數軸上的位置得出b<-1,0<a<1是解題關鍵,又利用了有理數的運算.12、C【解析】
科學記數法就是將一個數字表示成a×10的n次冪的形式,其中1≤|a|<10,n表示整數.n為整數位數減1,即從左邊第一位開始,在首位非零的后面加上小數點,再乘以10的n次冪.【詳解】數據8600用科學記數法表示為8.6×103故選C.【點睛】用科學記數法表示一個數的方法是(1)確定a:a是只有一位整數的數;(2)確定n:當原數的絕對值≥10時,n為正整數,n等于原數的整數位數減1;當原數的絕對值<1時,n為負整數,n的絕對值等于原數中左起第一個非零數前零的個數(含整數位數上的零).二、填空題:(本大題共6個小題,每小題4分,共24分.)13、4【解析】∵AE=12ED,AE+ED=AD,∴ED=2∵四邊形ABCD是平行四邊形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案為4.14、【解析】
解:如圖所示:∵MA′是定值,A′C長度取最小值時,即A′在MC上時,過點M作MF⊥DC于點F,∵在邊長為2的菱形ABCD中,∠A=60°,M為AD中點,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案為.【點評】此題主要考查了菱形的性質以及銳角三角函數關系等知識,得出A′點位置是解題關鍵.15、5200【解析】設甲到學校的距離為x米,則乙到學校的距離為(3900+x),甲的速度為4y(米/分鐘),則乙的速度為3y(米/分鐘),依題意得:解得所以甲到學校距離為2400米,乙到學校距離為6300米,所以甲的家和乙的家相距8700米.故答案是:8700.【點睛】本題考查一次函數的應用,二元一次方程組的應用等知識,解題的關鍵是讀懂圖象信息.16、(3,0)【解析】
把交點坐標代入拋物線解析式求m的值,再令y=0解一元二次方程求另一交點的橫坐標.【詳解】把點(1,0)代入拋物線y=x2-4x+中,得m=6,所以,原方程為y=x2-4x+3,令y=0,解方程x2-4x+3=0,得x1=1,x2=3∴拋物線與x軸的另一個交點的坐標是(3,0).故答案為(3,0).【點睛】本題考查了點的坐標與拋物線解析式的關系,拋物線與x軸交點坐標的求法.本題也可以用根與系數關系直接求解.17、3【解析】設過點A(2,0)和點B(0,2)的直線的解析式為:,則,解得:,∴直線AB的解析式為:,∵點C(-1,m)在直線AB上,∴,即.故答案為3.點睛:在平面直角坐標系中,已知三點共線和其中兩點的坐標,求第3點坐標中待定字母的值時,通常先由已知兩點的坐標求出過這兩點的直線的解析式,在將第3點的坐標代入所求解析式中,即可求得待定字母的值.18、(0,0)【解析】
根據坐標的平移規律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規律是:橫坐標右移加,左移減;縱坐標上移加,下移減.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)45°;(2)26°.【解析】
(1)根據圓周角和圓心角的關系和圖形可以求得∠ABC和∠ABD的大小;(2)根據題意和平行線的性質、切線的性質可以求得∠OCD的大小.【詳解】(1)∵AB是⊙O的直徑,∠BAC=38°,∴∠ACB=90°,∴∠ABC=∠ACB﹣∠BAC=90°﹣38°=52°,∵D為弧AB的中點,∠AOB=180°,∴∠AOD=90°,∴∠ABD=45°;(2)連接OD,∵DP切⊙O于點D,∴OD⊥DP,即∠ODP=90°,∵DP∥AC,∠BAC=38°,∴∠P=∠BAC=38°,∵∠AOD是△ODP的一個外角,∴∠AOD=∠P+∠ODP=128°,∴∠ACD=64°,∵OC=OA,∠BAC=38°,∴∠OCA=∠BAC=38°,∴∠OCD=∠ACD﹣∠OCA=64°﹣38°=26°.【點睛】本題考查切線的性質、圓周角定理,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.20、(1)籃球每個50元,排球每個30元.(2)滿足題意的方案有三種:①購買籃球8個,排球12個;②購買籃球9,排球11個;③購買籃球2個,排球2個;方案①最省錢【解析】試題分析:(1)設籃球每個x元,排球每個y元,根據費用可得等量關系為:購買2個籃球,3個排球,共需花費190元;購買3個籃球的費用與購買5個排球的費用相同,列方程求解即可;(2)不等關系為:購買足球和籃球的總費用不超過1元,列式求得解集后得到相應整數解,從而求解.試題解析:解:(1)設籃球每個x元,排球每個y元,依題意,得:解得.答:籃球每個50元,排球每個30元.(2)設購買籃球m個,則購買排球(20-m)個,依題意,得:50m+30(20-m)≤1.解得:m≤2.又∵m≥8,∴8≤m≤2.∵籃球的個數必須為整數,∴只能取8、9、2.∴滿足題意的方案有三種:①購買籃球8個,排球12個,費用為760元;②購買籃球9,排球11個,費用為780元;③購買籃球2個,排球2個,費用為1元.以上三個方案中,方案①最省錢.點睛:本題主要考查了二元一次方程組及一元一次不等式的應用;得到相應總費用的關系式是解答本題的關鍵.21、證明見解析.【解析】
根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.22、(1)方案1;B(5,0);;(2)3.2m.【解析】試題分析:(1)根據拋物線在坐標系的位置,可用待定系數法求拋物線的解析式.(2)把x=3代入拋物線的解析式,即可得到結論.試題解析:解:方案1:(1)點B的坐標為(5,0),設拋物線的解析式為:.由題意可以得到拋物線的頂點為(0,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入,解得:=3.2,∴水面上漲的高度為3.2m.方案2:(1)點B的坐標為(10,0).設拋物線的解析式為:.由題意可以得到拋物線的頂點為(5,5),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=3.2,∴水面上漲的高度為3.2m.方案3:(1)點B的坐標為(5,),由題意可以得到拋物線的頂點為(0,0).設拋物線的解析式為:,把點B的坐標(5,),代入解析式可得:,∴拋物線的解析式為:;(2)由題意:把代入解得:=,∴水面上漲的高度為3.2m.23、(1)90°;(1)AE1+EB1=AC1,證明見解析.【解析】
(1)根據題意得到DE是線段BC的垂直平分線,根據線段垂直平分線的性質得到EB=EC,根據等腰三角形的性質、三角形內角和定理計算即可;(1)根據勾股定理解答.【詳解】解:(1)∵點D是BC邊的中點,DE⊥BC,∴DE是線段BC的垂直平分線,∴EB=EC,∴∠ECB=∠B=45°,∴∠AEC=∠ECB+∠B=90°;(1)AE1+EB1=AC1.∵∠AEC=90°,∴AE1+EC1=AC1,∵EB=EC,∴AE1+EB1=AC1.【點睛】本題考查的是線段垂直平分線的性質定理,掌握線段的垂直平分線上的點到線段的兩個端點的距離相等是解題的關鍵.24、(1);(2).【解析】試題分析:(1)、3個等只有一個控制樓梯,則概率就是1÷3;(2)、根據題意畫出樹狀圖,然后根據概率的計算法則得出概率.試題解析:(1)、小晗任意按下一個開關,正好樓梯燈亮的概率是:(2)、畫樹狀圖得:結果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6種等可能的結果,正好客廳燈和走廊燈同時亮的有2種情況,∴正好客廳燈和走廊燈同時亮的概率是=.考點:概率的計算.25、1【解析】試題分析:先分別計算絕對值,算術平方根,零指數冪和負指數冪,然后相加即可.試題解析:解:|﹣1|+﹣(1﹣)0﹣()﹣1=1+3﹣1﹣2=1.點睛:本題考查了實數的計算,熟悉計算的順序和相關的法則是解決此題的關鍵
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寵物服務行業寵物健康免責協議書
- 維修車輛賠償協議書
- 健康生活中心會員服務協議
- 影視制作公司演員聘用協議
- 特色學校教師聘用合同
- 2025年導游資格證考試筆試模擬試卷:旅游安全管理與事故預防實戰技巧提升試題
- 私人飛行員培訓飛行事故風險分析免責協議
- 2025年成人高等學校招生考試《語文》模擬沖刺題庫:現代文閱讀理解能力測試卷
- 機器設備無償租賃合同
- 演員肖像權使用許可協議
- 住房公積金個人賬戶合并申請表(文書模板)
- 醫院第一季度全成本核算分析報告
- Rational-Rose-用例圖、順序圖、活動圖、類圖、狀態機圖-實例
- 《馬說》-教學設計【教學參考】
- 骨干教師考試題庫(全)
- 華為智慧園區解決方案
- 世界銀行集團簡介課件(PPT 48頁)
- 中國毛筆字書法教育培訓動態PPT模板
- 委外加工作業流程圖
- 面試無機化學研究前沿ppt課件
- 金屬礦床地下開采——礦床開拓方法設計(完整版)
評論
0/150
提交評論