




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
青島第二中學2025屆高考模擬信息卷(押題卷)數學試題(七)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若復數為虛數單位在復平面內所對應的點在虛軸上,則實數a為()A. B.2 C. D.2.2019年10月1日,中華人民共和國成立70周年,舉國同慶.將2,0,1,9,10這5個數字按照任意次序排成一行,拼成一個6位數,則產生的不同的6位數的個數為A.96 B.84 C.120 D.3603.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a4.下圖是來自古希臘數學家希波克拉底所研究的幾何圖形,此圖由三個半圓構成,三個半圓的直徑分別為直角三角形的斜邊、直角邊,已知以直角邊為直徑的半圓的面積之比為,記,則()A. B. C.1 D.5.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.36.已知是偶函數,在上單調遞減,,則的解集是A. B.C. D.7.若,,,則()A. B.C. D.8.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統計圖如下面的折線圖.已知目前的月就醫費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元9.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.10.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.11.已知復數,則對應的點在復平面內位于()A.第一象限 B.第二象限C.第三象限 D.第四象限12.如圖是二次函數的部分圖象,則函數的零點所在的區間是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知為等差數列,為其前n項和,若,,則_______.14.已知等比數列{an}的前n項和為Sn,若a215.在中,,,,則__________.16.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,直線的參數方程為(為參數),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變為原來的倍得到曲線(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.18.(12分)古人云:“腹有詩書氣自華.”為響應全民閱讀,建設書香中國,校園讀書活動的熱潮正在興起.某校為統計學生一周課外讀書的時間,從全校學生中隨機抽取名學生進行問卷調査,統計了他們一周課外讀書時間(單位:)的數據如下:一周課外讀書時間/合計頻數46101214244634頻率0.020.030.050.060.070.120.250.171(1)根據表格中提供的數據,求,,的值并估算一周課外讀書時間的中位數.(2)如果讀書時間按,,分組,用分層抽樣的方法從名學生中抽取20人.①求每層應抽取的人數;②若從,中抽出的學生中再隨機選取2人,求這2人不在同一層的概率.19.(12分)已知矩形紙片中,,將矩形紙片的右下角沿線段折疊,使矩形的頂點B落在矩形的邊上,記該點為E,且折痕的兩端點M,N分別在邊上.設,的面積為S.(1)將l表示成θ的函數,并確定θ的取值范圍;(2)求l的最小值及此時的值;(3)問當θ為何值時,的面積S取得最小值?并求出這個最小值.20.(12分)在平面直角坐標系中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系中取相同的長度單位.已知直線l的參數方程為(t為參數),曲線C的極坐標方程為ρ=4sin(θ+).(1)求直線l的普通方程與曲線C的直角坐標方程;(2)若直線l與曲線C交于M,N兩點,求△MON的面積.21.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.22.(10分)已知橢圓:(),與軸負半軸交于,離心率.(1)求橢圓的方程;(2)設直線:與橢圓交于,兩點,連接,并延長交直線于,兩點,已知,求證:直線恒過定點,并求出定點坐標.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
利用復數代數形式的乘除運算化簡,再由實部為求得值.【詳解】解:在復平面內所對應的點在虛軸上,,即.故選D.本題考查復數代數形式的乘除運算,考查復數的代數表示法及其幾何意義,是基礎題.2.B【解析】
2,0,1,9,10按照任意次序排成一行,得所有不以0開頭的排列數共個,其中含有2個10的排列數共個,所以產生的不同的6位數的個數為.故選B.3.C【解析】
兩復數相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.本題考查復數的概念,屬于基礎題.4.D【解析】
根據以直角邊為直徑的半圓的面積之比求得,即的值,由此求得和的值,進而求得所求表達式的值.【詳解】由于直角邊為直徑的半圓的面積之比為,所以,即,所以,所以.故選:D本小題主要考查同角三角函數的基本關系式,考查二倍角公式,屬于基礎題.5.A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.6.D【解析】
先由是偶函數,得到關于直線對稱;進而得出單調性,再分別討論和,即可求出結果.【詳解】因為是偶函數,所以關于直線對稱;因此,由得;又在上單調遞減,則在上單調遞增;所以,當即時,由得,所以,解得;當即時,由得,所以,解得;因此,的解集是.本題主要考查由函數的性質解對應不等式,熟記函數的奇偶性、對稱性、單調性等性質即可,屬于常考題型.7.C【解析】
利用指數函數和對數函數的單調性比較、、三個數與和的大小關系,進而可得出、、三個數的大小關系.【詳解】對數函數為上的增函數,則,即;指數函數為上的增函數,則;指數函數為上的減函數,則.綜上所述,.故選:C.本題考查指數冪與對數式的大小比較,一般利用指數函數和對數函數的單調性結合中間值法來比較,考查推理能力,屬于基礎題.8.D【解析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.9.D【解析】
設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.10.D【解析】
由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,
∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,
∴
設正方體的棱長為,則,∴.
取,連接,則共面,在中,設到的距離為,
設到平面的距離為,
.
故選D.本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.11.A【解析】
利用復數除法運算化簡,由此求得對應點所在象限.【詳解】依題意,對應點為,在第一象限.故選A.本小題主要考查復數除法運算,考查復數對應點的坐標所在象限,屬于基礎題.12.B【解析】
根據二次函數圖象的對稱軸得出范圍,軸截距,求出的范圍,判斷在區間端點函數值正負,即可求出結論.【詳解】∵,結合函數的圖象可知,二次函數的對稱軸為,,,∵,所以在上單調遞增.又因為,所以函數的零點所在的區間是.故選:B.本題考查二次函數的圖象及函數的零點,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】試題分析:因為是等差數列,所以,即,又,所以,所以.故答案為1.【考點】等差數列的基本性質【名師點睛】在等差數列五個基本量,,,,中,已知其中三個量,可以根據已知條件,結合等差數列的通項公式、前項和公式列出關于基本量的方程(組)來求余下的兩個量,計算時須注意整體代換思想及方程思想的應用.14.-2【解析】試題分析:∵a2考點:等比數列性質及求和公式15.1【解析】
由已知利用余弦定理可得,即可解得的值.【詳解】解:,,,由余弦定理,可得,整理可得:,解得或(舍去).故答案為:1.本題主要考查余弦定理在解三角形中的應用,屬于基礎題.16.2【解析】
由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2本題主要考查純虛數定義的應用,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1),;(2).【解析】
(1)在直線的參數方程中消去參數可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據變換得出的普通方程為,可設點的坐標為,利用點到直線的距離公式結合正弦函數的有界性可得出結果.【詳解】(1)由(為參數),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變為原來的倍得到曲線的方程為,所以曲線的參數方程為(為參數).故點到直線的距離為,當時,最小為.本題考查曲線的參數方程、極坐標方程與普通方程的相互轉化,同時也考查了利用橢圓的參數方程解決點到直線的距離最值的求解,考查計算能力,屬于中等題.18.(1),,,中位數;(2)①三層中抽取的人數分別為2,5,13;②【解析】
(1)根據頻率分布直方表的性質,即可求得,得到,,再結合中位數的計算方法,即可求解.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,根據抽樣比,求得在三層中抽取的人數;②由①知,設內被抽取的學生分別為,內被抽取的學生分別為,利用列舉法得到基本事件的總數,利用古典概型的概率計算公式,即可求解.【詳解】(1)由題意,可得,所以,.設一周課外讀書時間的中位數為小時,則,解得,即一周課外讀書時間的中位數約為小時.(2)①由題意知用分層抽樣的方法從樣本中抽取20人,抽樣比為,又因為,,的頻數分別為20,50,130,所以從,,三層中抽取的人數分別為2,5,13.②由①知,在,兩層中共抽取7人,設內被抽取的學生分別為,內被抽取的學生分別為,若從這7人中隨機抽取2人,則所有情況為,,,,,,,,,,,,,,,,,,,,,共有21種,其中2人不在同一層的情況為,,,,,,,,,,共有10種.設事件為“這2人不在同一層”,由古典概型的概率計算公式,可得概率為.本題主要考查了頻率分布直方表的性質,中位數的求解,以及古典概型的概率計算等知識的綜合應用,著重考查了分析問題和解答問題的能力,屬于基礎題.19.(1)(2),的最小值為.(3)時,面積取最小值為【解析】
(1),利用三角函數定義分別表示,且,即可得到關于的解析式;,,則,即可得到的范圍;(2)由(1),若求l的最小值即求的最大值,即可求的最大值,設為,令,則,即可設,利用導函數判斷函數的單調性,即可求得的最大值,進而求解;(3)由題,,則,設,,利用導函數求得的最大值,即可求得的最小值.【詳解】解:(1),故.因為,所以,,所以,又,,則,所以,所以(2)記,則,設,,則,記,則,令,則,當時,;當時,,所以在上單調遞增,在上單調遞減,故當時取最小值,此時,的最小值為.(3)的面積,所以,設,則,設,則,令,,所以當時,;當時,,所以在上單調遞增,在上單調遞減,故當,即時,面積取最小值為本題考查三角函數定義的應用,考查利用導函數求最值,考查運算能力.20.(1)直線l的普通方程為x+y-4=0.曲線C的直角坐標方程是圓:(x-)2+(y-1)2=4.(2)4【解析】
(1)將直線l參數方程中的消去,即可得直線l的普通方程,對曲線C的極坐標方程兩邊同時乘以,利用可得曲線C的直角坐標方程;(2)求出點到直線的距離,再求出的弦長,從而得出△MO
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45398-2025信息技術眾包服務平臺功能通用要求
- 江蘇省南京聯合體【棲霞、江寧、雨花】重點達標名校2025年初三中考一模試卷化學試題含解析
- 湖南省長沙市瀏陽市2025屆數學三下期末綜合測試模擬試題含解析
- 寧夏葡萄酒與防沙治沙職業技術學院《大學英語Ⅱ(聽力)》2023-2024學年第二學期期末試卷
- 武漢紡織大學外經貿學院《新藥研究與開發A》2023-2024學年第一學期期末試卷
- 遼寧省沈陽市鐵西區達標名校2025年下學期初三生物試題中考仿真模擬考試試卷(四)含解析
- 內蒙古醫科大學《智能制造系統架構》2023-2024學年第二學期期末試卷
- 延安大學《木版畫術科技能教學》2023-2024學年第二學期期末試卷
- 湛江幼兒師范專科學校《口腔臨床醫學概論(口腔修復學)》2023-2024學年第一學期期末試卷
- 四川鐵道職業學院《鋼筋混凝土與砌體結構設計》2023-2024學年第二學期期末試卷
- 鄉村基礎設施建設指南
- GB/T 44275.1-2024工業自動化系統與集成開放技術字典及其在主數據中的應用第1部分:概述與基本原則
- 高中生物學選擇性必修一測試卷及答案解析
- 2024-2030年珍珠制品市場投資前景分析及供需格局研究預測報告
- DL∕T 793.5-2018 發電設備可靠性評價規程 第5部分:燃氣輪發電機組
- 安全內業標準(定稿)
- 人教版數學二年級下冊全冊核心素養目標教學設計
- 人教小學數學六年級下冊整.理和復習《混合運算與簡便運算》示范公開課教學課件
- 人教版 八年級上冊音樂 第三單元 洪湖水浪打浪 教案
- 照明燈具安裝施工工藝方案
- 護理禮儀知識競賽考試題庫200多題(含答案)
評論
0/150
提交評論