2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷含解析_第1頁
2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷含解析_第2頁
2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷含解析_第3頁
2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷含解析_第4頁
2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩12頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024屆湖南長沙明德集團中考數學最后沖刺模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.下列標志中,可以看作是軸對稱圖形的是()A. B. C. D.2.不解方程,判別方程2x2﹣3x=3的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.有一個實數根 D.無實數根3.如圖,已知AB∥CD,DE⊥AF,垂足為E,若∠CAB=50°,則∠D的度數為()A.30° B.40° C.50° D.60°4.加工爆米花時,爆開且不糊的粒數占加工總粒數的百分比稱為“可食用率”.在特定條件下,可食用率p與加工時間t(單位:分鐘)滿足的函數關系p=at2+bt+c(a,b,c是常數),如圖記錄了三次實驗的數據.根據上述函數模型和實驗數據,可得到最佳加工時間為()A.4.25分鐘 B.4.00分鐘 C.3.75分鐘 D.3.50分鐘5.射擊訓練中,甲、乙、丙、丁四人每人射擊10次,平均環數均為8.7環,方差分別為,,,,則四人中成績最穩定的是()A.甲 B.乙 C.丙 D.丁6.如圖,一次函數y1=x+b與一次函數y2=kx+4的圖象交于點P(1,3),則關于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<17.下列各圖中a、b、c為三角形的邊長,則甲、乙、丙三個三角形和左側△ABC全等的是()A.甲和乙 B.乙和丙 C.甲和丙 D.只有丙8.﹣的絕對值是()A.﹣ B. C.﹣2 D.29.在△ABC中,點D、E分別在AB、AC上,如果AD=2,BD=3,那么由下列條件能夠判定DE∥BC的是()A.= B.= C.= D.=10.如果y=++3,那么yx的算術平方根是()A.2 B.3 C.9 D.±3二、填空題(本大題共6個小題,每小題3分,共18分)11.點P的坐標是(a,b),從-2,-1,0,1,2這五個數中任取一個數作為a的值,再從余下的四個數中任取一個數作為b的值,則點P(a,b)在平面直角坐標系中第二象限內的概率是.12.如圖,Rt△ABC的直角邊BC在x軸上,直線y=x﹣經過直角頂點B,且平分△ABC的面積,BC=3,點A在反比例函數y=圖象上,則k=_______.13.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當“折痕△BEF”面積最大時,點E的坐標為_________________________.14.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.15.若一次函數y=﹣2(x+1)+4的值是正數,則x的取值范圍是_______.16.將2.05×10﹣3用小數表示為__.三、解答題(共8題,共72分)17.(8分)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統計了這15人某月的銷售量如下:每人銷售件數1800510250210150120人數113532(1)求這15位營銷人員該月銷售量的平均數、中位數和眾數;假設銷售負責人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.18.(8分)某一天,水果經營戶老張用1600元從水果批發市場批發獼猴桃和芒果共50千克,后再到水果市場去賣,已知獼猴桃和芒果當天的批發價和零售價如表所示:品名獼猴桃芒果批發價元千克2040零售價元千克2650他購進的獼猴桃和芒果各多少千克?如果獼猴桃和芒果全部賣完,他能賺多少錢?19.(8分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F,G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F,G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)20.(8分)如圖,∠A=∠D,∠B=∠E,AF=DC.求證:BC=EF.21.(8分)解分式方程:22.(10分)如圖,AB是⊙O的直徑,點F,C是⊙O上兩點,且,連接AC,AF,過點C作CD⊥AF交AF延長線于點D,垂足為D.(1)求證:CD是⊙O的切線;(2)若CD=2,求⊙O的半徑.

23.(12分)如圖,AB是圓O的直徑,AC是圓O的弦,過點C的切線交AB的延長線于點D,若∠A=∠D,CD=2.(1)求∠A的度數.(2)求圖中陰影部分的面積.24.如圖,在?ABCD中,以點4為圓心,AB長為半徑畫弧交AD于點F;再分別以點B、F為圓心,大于12(1)根據以上尺規作圖的過程,求證:四邊形ABEF是菱形;(2)若AB=2,AE=23,求∠BAD的大小.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】

根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】解:A、不是軸對稱圖形,是中心對稱圖形,不符合題意;

B、不是軸對稱圖形,是中心對稱圖形,不符合題意;

C、不是軸對稱圖形,是中心對稱圖形,不符合題意;

D、是軸對稱圖形,符合題意.

故選D.【點睛】本題考查了中心對稱圖形和軸對稱圖形的定義,掌握中心對稱圖形與軸對稱圖形的概念,解答時要注意:判斷軸對稱圖形的關鍵是尋找對稱軸,圖形兩部沿對稱軸疊后可重合;判斷中心對稱圖形是要尋找對稱中心,圖形旋轉180度后與原圖重合.2、B【解析】一元二次方程的根的情況與根的判別式有關,,方程有兩個不相等的實數根,故選B3、B【解析】試題解析:∵AB∥CD,且∴在中,故選B.4、C【解析】

根據題目數據求出函數解析式,根據二次函數的性質可得.【詳解】根據題意,將(3,0.7)、(4,0.8)、(5,0.5)代入p=at2+bt+c,得:解得:a=?0.2,b=1.5,c=?2,即p=?0.2t2+1.5t?2,當t=?=3.75時,p取得最大值,故選C.【點睛】本題考查了二次函數的應用,熟練掌握性質是解題的關鍵.5、D【解析】

根據方差是反映一組數據的波動大小的一個量.方差越大,則平均值的離散程度越大,穩定性也越小;反之,則它與其平均值的離散程度越小,穩定性越好可得答案.【詳解】∵0.45<0.51<0.62,∴丁成績最穩定,故選D.【點睛】此題主要考查了方差,關鍵是掌握方差越小,穩定性越大.6、C【解析】試題分析:當x>1時,x+b>kx+4,即不等式x+b>kx+4的解集為x>1.故選C.考點:一次函數與一元一次不等式.7、B【解析】分析:根據三角形全等的判定方法得出乙和丙與△ABC全等,甲與△ABC不全等.詳解:乙和△ABC全等;理由如下:在△ABC和圖乙的三角形中,滿足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和圖丙的三角形中,滿足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲與△ABC全等;故選B.點睛:本題考查了三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.8、B【解析】

根據求絕對值的法則,直接計算即可解答.【詳解】,故選:B.【點睛】本題主要考查求絕對值的法則,掌握負數的絕對值等于它的相反數,是解題的關鍵.9、D【解析】

根據平行線分線段成比例定理的逆定理,當或時,,然后可對各選項進行判斷.【詳解】解:當或時,,

即或.

所以D選項是正確的.【點睛】本題考查了平行線分線段成比例定理:三條平行線截兩條直線,所得的對應線段成比例.也考查了平行線分線段成比例定理的逆定理.10、B【解析】解:由題意得:x﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,則yx=9,9的算術平方根是1.故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、【解析】畫樹狀圖為:共有20種等可能的結果數,其中點P(a,b)在平面直角坐標系中第二象限內的結果數為4,所以點P(a,b)在平面直角坐標系中第二象限內的概率==.故答案為.12、1【解析】分析:根據題意得出點B的坐標,根據面積平分得出點D的坐標,利用三角形相似可得點A的坐標,從而求出k的值.詳解:根據一次函數可得:點B的坐標為(1,0),∵BD平分△ABC的面積,BC=3∴點D的橫坐標1.5,∴點D的坐標為,∵DE:AB=1:1,∴點A的坐標為(1,1),∴k=1×1=1.點睛:本題主要考查的是反比例函數的性質以及三角形相似的應用,屬于中等難度的題型.得出點D的坐標是解決這個問題的關鍵.13、(,2).【解析】

解:如圖,當點B與點D重合時,△BEF面積最大,設BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數形結合思想解題是關鍵.14、1【解析】

兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數是相同的.15、x<1【解析】

根據一次函數的性質得出不等式解答即可.【詳解】因為一次函數y=﹣2(x+1)+4的值是正數,可得:﹣2(x+1)+4>0,解得:x<1,故答案為x<1.【點睛】本題考查了一次函數與一元一次不等式,根據題意正確列出不等式是解題的關鍵.16、0.1【解析】試題解析:原式=2.05×10-3=0.1.【點睛】本題考查了科學記數法-原數,用科學記數法表示的數還原成原數時,n>0時,n是幾,小數點就向右移幾位;n<0時,n是幾,小數點就向左移幾位.三、解答題(共8題,共72分)17、(1)平均數為320件,中位數是210件,眾數是210件;(2)不合理,定210件【解析】試題分析:(1)根據平均數、中位數和眾數的定義即可求得結果;(2)把月銷售額320件與大部分員工的工資比較即可判斷.(1)平均數件,∵最中間的數據為210,∴這組數據的中位數為210件,∵210是這組數據中出現次數最多的數據,∴眾數為210件;(2)不合理,理由:在15人中有13人銷售額達不到320件,定210件較為合理.考點:本題考查的是平均數、眾數和中位數點評:解答本題的關鍵是熟練掌握找中位數要把數據按從小到大的順序排列,位于最中間的一個數或兩個數的平均數為中位數;眾數是一組數據中出現次數最多的數據,注意眾數可以不止一個.18、(1)購進獼猴桃20千克,購進芒果30千克;(2)能賺420元錢.【解析】

設購進獼猴桃x千克,購進芒果y千克,由總價單價數量結合老張用1600元從水果批發市場批發獼猴桃和芒果共50千克,即可得出關于x,y的二元一次方程組,解之即可得出結論;根據利潤銷售收入成本,即可求出結論.【詳解】設購進獼猴桃x千克,購進芒果y千克,根據題意得:,解得:.答:購進獼猴桃20千克,購進芒果30千克.元.答:如果獼猴桃和芒果全部賣完,他能賺420元錢.【點睛】本題考查了二元一次方程組的應用,解題的關鍵是:找準等量關系,正確列出二元一次方程組;根據數量關系,列式計算.19、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據平行線的性質即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,FG=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F,G分別為邊AB,BC,CD的中點,∴EF=AC,FG=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質;中點四邊形.20、證明見解析.【解析】

想證明BC=EF,可利用AAS證明△ABC≌△DEF即可.【詳解】解:∵AF=DC,∴AF+FC=FC+CD,∴AC=FD,在△ABC和△DEF中,∴△ABC≌△DEF(AAS)∴BC=EF.【點睛】本題考查全等三角形的判定和性質,解題的關鍵是靈活運用所學知識解決問題,屬于中考常考題型.21、無解【解析】

首先進行去分母,將分式方程轉化為整式方程,然后按照整式方程的求解方法進行求解,最后對所求的解進行檢驗,看是否能使分母為零.【詳解】解:兩邊同乘以(x+2)(x-2)得:x(x+2)-(x+2)(x-2)=8去括號,得:+2x-+4=8移項、合并同類項得:2x=4解得:x=2經檢驗,x=2是方程的增根∴方程無解【點睛】本題考查解分式方程,注意分式方程結果要檢驗.22、(2)1【解析】試題分析:(1)連結OC,由=,根據圓周角定理得∠FAC=∠BAC,而∠OAC=∠OCA,則∠FAC=∠OCA,可判斷OC∥AF,由于CD⊥AF,所以OC⊥CD,然后根據切線的判定定理得到CD是⊙O的切線;(2)連結BC,由AB為直徑得∠ACB=90°,由==,得∠BOC=60°,則∠BAC=30°,所以∠DAC=30°,在Rt△ADC中,利用含30°的直角三角形三邊的關系得AC=2CD=1,在Rt△ACB中,利用含30°的直角三角形三邊的關系得BC=AC=1,AB=2BC=8,所以⊙O的半徑為1.試題解析:(1)證明:連結OC,如圖,∵=∴∠FAC=∠BAC∵OA=OC∴∠OAC=∠OCA∴∠FAC=∠OCA∴OC∥AF∵CD⊥AF∴OC⊥CD∴CD是⊙O的切線(2)解:連結BC,如圖∵AB為直徑∴∠ACB=90°∵==∴∠BOC=×180°=60°∴∠BAC=30°∴∠DAC=30°在Rt△ADC中,CD=2∴AC=2CD=1在Rt△ACB中,BC=AC=×1=1∴AB=2BC=8∴⊙O的半徑為1.考點:圓周角定理,切線的判定定理,30°的直角三角形三邊的關系23、(1)∠A=30°;(2)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論