




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年江蘇淮安曙光雙語校中考押題數學預測卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.有一圓形苗圃如圖1所示,中間有兩條交叉過道AB,CD,它們為苗圃的直徑,且AB⊥CD.入口K位于中點,園丁在苗圃圓周或兩條交叉過道上勻速行進.設該園丁行進的時間為x,與入口K的距離為y,表示y與x的函數關系的圖象大致如圖2所示,則該園丁行進的路線可能是()A.A→O→D B.C→A→O→B C.D→O→C D.O→D→B→C2.如圖,AB∥CD,FH平分∠BFG,∠EFB=58°,則下列說法錯誤的是()A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH3.如圖,點E是四邊形ABCD的邊BC延長線上的一點,則下列條件中不能判定AD∥BE的是()A. B. C. D.4.為考察兩名實習工人的工作情況,質檢部將他們工作第一周每天生產合格產品的個數整理成甲,乙兩組數據,如下表:甲26778乙23488關于以上數據,說法正確的是()A.甲、乙的眾數相同 B.甲、乙的中位數相同C.甲的平均數小于乙的平均數 D.甲的方差小于乙的方差5.若分式的值為0,則x的值為()A.-2 B.0 C.2 D.±26.如圖,矩形ABCD中,AB=4,BC=3,F是AB中點,以點A為圓心,AD為半徑作弧交AB于點E,以點B為圓心,BF為半徑作弧交BC于點G,則圖中陰影部分面積的差S1-S2為()A. B. C. D.67.不等式組1-x≤0,3x-6<0A. B. C. D.8.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數有()A.1 B.2 C.3 D.49.圖1是邊長為1的六個小正方形組成的圖形,它可以圍成圖2的正方體,則圖1中正方形頂點A,B在圍成的正方體中的距離是()A.0 B.1 C. D.10.在下面的四個幾何體中,左視圖與主視圖不相同的幾何體是()A. B. C. D.11.如圖,在△ABC中,AB=AC,∠A=30°,AB的垂直平分線l交AC于點D,則∠CBD的度數為()A.30° B.45° C.50° D.75°12.如圖,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以點C為圓心,CB長為半徑作弧,交AB于點D;再分別以點B和點D為圓心,大于BD的長為半徑作弧,兩弧相交于點E,作射線CE交AB于點F,則AF的長為()A.5 B.6 C.7 D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,點D是BC上一動點,連接AD,將△ACD沿AD折疊,點C落在點E處,連接DE交AB于點F,當△DEB是直角三角形時,DF的長為_____.14.關于x的方程x2-3x+2=0的兩根為x1,x2,則x1+x2+x1x2的值為______.15.計算:=____.16.已知關于x方程x2﹣3x+a=0有一個根為1,則方程的另一個根為_____.17.將一張長方形紙片折疊成如圖所示的形狀,則∠ABC=_________.18.若a,b互為相反數,則a2﹣b2=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,菱形ABCD的邊長為20cm,∠ABC=120°,對角線AC,BD相交于點O,動點P從點A出發,以4cm/s的速度,沿A→B的路線向點B運動;過點P作PQ∥BD,與AC相交于點Q,設運動時間為t秒,0<t<1.(1)設四邊形PQCB的面積為S,求S與t的關系式;(2)若點Q關于O的對稱點為M,過點P且垂直于AB的直線l交菱形ABCD的邊AD(或CD)于點N,當t為何值時,點P、M、N在一直線上?(3)直線PN與AC相交于H點,連接PM,NM,是否存在某一時刻t,使得直線PN平分四邊形APMN的面積?若存在,求出t的值;若不存在,請說明理由.20.(6分)某中學課外興趣活動小組準備圍建一個矩形苗圃園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為18米(如圖所示),設這個苗圃園垂直于墻的一邊長為米.若苗圃園的面積為72平方米,求;若平行于墻的一邊長不小于8米,這個苗圃園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;21.(6分)如圖1,已知∠DAC=90°,△ABC是等邊三角形,點P為射線AD上任意一點(點P與點A不重合),連結CP,將線段CP繞點C順時針旋轉60°得到線段CQ,連結QB并延長交直線AD于點E.(1)如圖1,猜想∠QEP=°;(2)如圖2,3,若當∠DAC是銳角或鈍角時,其它條件不變,猜想∠QEP的度數,選取一種情況加以證明;(3)如圖3,若∠DAC=135°,∠ACP=15°,且AC=4,求BQ的長.22.(8分)某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數量是第一批購進量的2倍,但單價貴了10元.該商家購進的第一批襯衫是多少件?若兩批襯衫按相同的標價銷售,最后剩下50件按八折優惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?23.(8分)觀察規律并填空.______(用含n的代數式表示,n是正整數,且n≥2)24.(10分)如圖,矩形ABCD中,AB=4,AD=5,E為BC上一點,BE∶CE=3∶2,連接AE,點P從點A出發,沿射線AB的方向以每秒1個單位長度的速度勻速運動,過點P作PF∥BC交直線AE于點F.(1)線段AE=______;(2)設點P的運動時間為t(s),EF的長度為y,求y關于t的函數關系式,并寫出t的取值范圍;(3)當t為何值時,以F為圓心的⊙F恰好與直線AB、BC都相切?并求此時⊙F的半徑.25.(10分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數;若OC=3,OA=5,求AB的長.26.(12分)已知關于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分別為△ABC三邊的長.如果x=﹣1是方程的根,試判斷△ABC的形狀,并說明理由;如果方程有兩個相等的實數根,試判斷△ABC的形狀,并說明理由;如果△ABC是等邊三角形,試求這個一元二次方程的根.27.(12分)先化簡,再求值:(﹣1)÷,其中x=1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】【分析】觀察圖象可知園丁與入口K的距離先減小,然后再增大,但是沒有到過入口的位置,據此逐項進行分析即可得.【詳解】A.A→O→D,園丁與入口的距離逐漸增大,逐漸減小,不符合;B.C→A→O→B,園丁與入口的距離逐漸減小,然后又逐漸增大,符合;C.D→O→C,園丁與入口的距離逐漸增大,不符合;D.O→D→B→C,園丁與入口的距離先逐漸變小,然后再逐漸變大,再逐漸變小,不符合,故選B.【點睛】本題考查了動點問題的函數圖象,看懂圖形,認真分析是解題的關鍵.2、D【解析】
根據平行線的性質以及角平分線的定義,即可得到正確的結論.【詳解】解:,故A選項正確;又故B選項正確;平分,,故C選項正確;,故選項錯誤;故選.【點睛】本題主要考查了平行線的性質,解題時注意:兩直線平行,同位角相等;兩直線平行,內錯角相等.3、A【解析】
利用平行線的判定方法判斷即可得到結果.【詳解】∵∠1=∠2,∴AB∥CD,選項A符合題意;∵∠3=∠4,∴AD∥BC,選項B不合題意;∵∠D=∠5,∴AD∥BC,選項C不合題意;∵∠B+∠BAD=180°,∴AD∥BC,選項D不合題意,故選A.【點睛】此題考查了平行線的判定,熟練掌握平行線的判定方法是解本題的關鍵.4、D【解析】
分別根據眾數、中位數、平均數、方差的定義進行求解后進行判斷即可得.【詳解】甲:數據7出現了2次,次數最多,所以眾數為7,排序后最中間的數是7,所以中位數是7,,=4.4,乙:數據8出現了2次,次數最多,所以眾數為8,排序后最中間的數是4,所以中位數是4,,=6.4,所以只有D選項正確,故選D.【點睛】本題考查了眾數、中位數、平均數、方差,熟練掌握相關定義及求解方法是解題的關鍵.5、C【解析】由題意可知:,解得:x=2,故選C.6、A【解析】
根據圖形可以求得BF的長,然后根據圖形即可求得S1-S2的值.【詳解】∵在矩形ABCD中,AB=4,BC=3,F是AB中點,∴BF=BG=2,∴S1=S矩形ABCD-S扇形ADE-S扇形BGF+S2,∴S1-S2=4×3-=,故選A.【點睛】本題考查扇形面積的計算、矩形的性質,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數形結合的思想解答.7、D【解析】試題分析:1-x≤0①3x-6<0②,由①得:x≥1,由②得:x<2,在數軸上表示不等式的解集是:,故選D.考點:1.在數軸上表示不等式的解集;2.解一元一次不等式組.8、C【解析】
①圖中有3個等腰直角三角形,故結論錯誤;②根據ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.9、C【解析】試題分析:本題考查了勾股定理、展開圖折疊成幾何體、正方形的性質;熟練掌握正方形的性質和勾股定理,并能進行推理計算是解決問題的關鍵.由正方形的性質和勾股定理求出AB的長,即可得出結果.解:連接AB,如圖所示:根據題意得:∠ACB=90°,由勾股定理得:AB==;故選C.考點:1.勾股定理;2.展開圖折疊成幾何體.10、B【解析】
由幾何體的三視圖知識可知,主視圖、左視圖是分別從物體正面、左面看所得到的圖形,細心觀察即可求解.【詳解】A、正方體的左視圖與主視圖都是正方形,故A選項不合題意;B、長方體的左視圖與主視圖都是矩形,但是矩形的長寬不一樣,故B選項與題意相符;C、球的左視圖與主視圖都是圓,故C選項不合題意;D、圓錐左視圖與主視圖都是等腰三角形,故D選項不合題意;故選B.【點睛】本題主要考查了幾何題的三視圖,解題關鍵是能正確畫出幾何體的三視圖.11、B【解析】試題解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分線交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故選B.12、B【解析】試題分析:連接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=1.∵作法可知BC=CD=4,CE是線段BD的垂直平分線,∴CD是斜邊AB的中線,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=2.故選B.考點:作圖—基本作圖;含30度角的直角三角形.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、或【解析】試題分析:如圖4所示;點E與點C′重合時.在Rt△ABC中,BC==4.由翻折的性質可知;AE=AC=3、DC=DE.則EB=2.設DC=ED=x,則BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如圖2所示:∠EDB=90時.由翻折的性質可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四邊形ACDC′為矩形.又∵AC=AC′,∴四邊形ACDC′為正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.點D在CB上運動,∠DBC′<90°,故∠DBC′不可能為直角.考點:翻折變換(折疊問題).14、5【解析】試題分析:利用根與系數的關系進行求解即可.解:∵x1,x2是方程x2-3x+2=0的兩根,∴x1+x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案為:5.15、1【解析】
根據算術平方根的定義進行化簡,再根據算術平方根的定義求解即可.【詳解】解:∵12=21,
∴=1,
故答案為:1.【點睛】本題考查了算術平方根的定義,先把化簡是解題的關鍵.16、1【解析】分析:設方程的另一個根為m,根據兩根之和等于-,即可得出關于m的一元一次方程,解之即可得出結論.詳解:設方程的另一個根為m,根據題意得:1+m=3,解得:m=1.故答案為1.點睛:本題考查了根與系數的關系,牢記兩根之和等于-是解題的關鍵.17、73°【解析】試題解析:∵∠CBD=34°,∴∠CBE=180°-∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.18、1【解析】【分析】直接利用平方差公式分解因式進而結合相反數的定義分析得出答案.【詳解】∵a,b互為相反數,∴a+b=1,∴a2﹣b2=(a+b)(a﹣b)=1,故答案為1.【點睛】本題考查了公式法分解因式以及相反數的定義,正確分解因式是解題關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)S=﹣2(0<t<1);(2);(3)見解析.【解析】
(1)如圖1,根據S=S△ABC-S△APQ,代入可得S與t的關系式;
(2)設PM=x,則AM=2x,可得AP=x=4t,計算x的值,根據直角三角形30度角的性質可得AM=2PM=,根據AM=AO+OM,列方程可得t的值;
(3)存在,通過畫圖可知:N在CD上時,直線PN平分四邊形APMN的面積,根據面積相等可得MG=AP,由AM=AO+OM,列式可得t的值.【詳解】解:(1)如圖1,∵四邊形ABCD是菱形,∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,∴∠OAB=30°,∵AB=20,∴OB=10,AO=10,由題意得:AP=4t,∴PQ=2t,AQ=2t,∴S=S△ABC﹣S△APQ,=,=,=﹣2t2+100(0<t<1);(2)如圖2,在Rt△APM中,AP=4t,∵點Q關于O的對稱點為M,∴OM=OQ,設PM=x,則AM=2x,∴AP=x=4t,∴x=,∴AM=2PM=,∵AM=AO+OM,∴=10+10﹣2t,t=;答:當t為秒時,點P、M、N在一直線上;(3)存在,如圖3,∵直線PN平分四邊形APMN的面積,∴S△APN=S△PMN,過M作MG⊥PN于G,∴,∴MG=AP,易得△APH≌△MGH,∴AH=HM=t,∵AM=AO+OM,同理可知:OM=OQ=10﹣2t,t=10=10﹣2t,t=.答:當t為秒時,使得直線PN平分四邊形APMN的面積.【點睛】考查了全等三角形的判定與性質,對稱的性質,三角形和四邊形的面積,二次根式的化簡等知識點,計算量大,解答本題的關鍵是熟練掌握動點運動時所構成的三角形各邊的關系.20、(1)2(2)當x=4時,y最小=88平方米【解析】(1)根據題意得方程解即可;(2)設苗圃園的面積為y,根據題意得到二次函數的解析式y=x(31-2x)=-2x2+31x,根據二次函數的性質求解即可.解:(1)苗圃園與墻平行的一邊長為(31-2x)米.依題意可列方程x(31-2x)=72,即x2-15x+36=1.解得x1=3(舍去),x2=2.(2)依題意,得8≤31-2x≤3.解得6≤x≤4.面積S=x(31-2x)=-2(x-)2+(6≤x≤4).①當x=時,S有最大值,S最大=;②當x=4時,S有最小值,S最?。?×(31-22)=88“點睛”此題考查了二次函數、一元二次不等式的實際應用問題,解題的關鍵是根據題意構建二次函數模型,然后根據二次函數的性質求解即可.21、(1)∠QEP=60°;(2)∠QEP=60°,證明詳見解析;(3)【解析】
(1)如圖1,先根據旋轉的性質和等邊三角形的性質得出∠PCA=∠QCB,進而可利用SAS證明△CQB≌△CPA,進而得∠CQB=∠CPA,再在△PEM和△CQM中利用三角形的內角和定理即可求得∠QEP=∠QCP,從而完成猜想;(2)以∠DAC是銳角為例,如圖2,仿(1)的證明思路利用SAS證明△ACP≌△BCQ,可得∠APC=∠Q,進一步即可證得結論;(3)仿(2)可證明△ACP≌△BCQ,于是AP=BQ,再求出AP的長即可,作CH⊥AD于H,如圖3,易證∠APC=30°,△ACH為等腰直角三角形,由AC=4可求得CH、PH的長,于是AP可得,問題即得解決.【詳解】解:(1)∠QEP=60°;證明:連接PQ,如圖1,由題意得:PC=CQ,且∠PCQ=60°,∵△ABC是等邊三角形,∴∠ACB=60°,∴∠PCA=∠QCB,則在△CPA和△CQB中,,∴△CQB≌△CPA(SAS),∴∠CQB=∠CPA,又因為△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案為60;(2)∠QEP=60°.以∠DAC是銳角為例.證明:如圖2,∵△ABC是等邊三角形,∴AC=BC,∠ACB=60°,∵線段CP繞點C順時針旋轉60°得到線段CQ,∴CP=CQ,∠PCQ=60°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠1=∠2,∴∠QEP=∠PCQ=60°;
(3)連結CQ,作CH⊥AD于H,如圖3,與(2)一樣可證明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠CAH=45°,∴△ACH為等腰直角三角形,∴AH=CH=AC=×4=,在Rt△PHC中,PH=CH=,∴PA=PH?AH=-,∴BQ=?.【點睛】本題考查了等邊三角形的性質、旋轉的性質、全等三角形的判定和性質、等腰直角三角形的性質和有關計算、30°角的直角三角形的性質等知識,涉及的知識點多、綜合性強,靈活應用全等三角形的判定和性質、熟練掌握旋轉的性質和相關圖形的性質是解題的關鍵.22、(1)120件;(2)150元.【解析】試題分析:(1)設該商家購進的第一批襯衫是x件,則購進第二批這種襯衫可設為2x件,由已知可得,,這種襯衫貴10元,列出方程求解即可.(2)設每件襯衫的標價至少為a元,由(1)可得出第一批和第二批的進價,從而求出利潤表達式,然后列不等式解答即可.試題解析:(1)設該商家購進的第一批襯衫是件,則第二批襯衫是件.由題意可得:,解得,經檢驗是原方程的根.(2)設每件襯衫的標價至少是元.由(1)得第一批的進價為:(元/件),第二批的進價為:(元)由題意可得:解得:,所以,,即每件襯衫的標價至少是150元.考點:1、分式方程的應用2、一元一次不等式的應用.23、【解析】
由前面算式可以看出:算式的左邊利用平方差公式因式分解,中間的數字互為倒數,乘積為1,只剩下兩端的(1﹣)和(1+)相乘得出結果.【詳解】===.故答案為:.【點睛】本題考查了算式的運算規律,找出數字之間的聯系,得出運算規律,解決問題.24、(1)5;(2);(3)時,半徑PF=;t=16,半徑PF=12.【解析】
(1)由矩形性質知BC=AD=5,根據BE:CE=3:2知BE=3,利用勾股定理可得AE=5;(2)由PF∥BE知,據此求得AF=t,再分0≤t≤4和t>4兩種情況分別求出EF即可得;(3)由以點F為圓心的⊙F恰好與直線AB、BC相切時PF=PG,再分t=0或t=4、0<t<4、t>4這三種情況分別求解可得【詳解】(1)∵四邊形ABCD為矩形,∴BC=AD=5,∵BE∶CE=3∶2,則BE=3,CE=2,∴AE===5.(2)如圖1,當點P在線段AB上運動時,即0≤t≤4,∵PF∥BE,∴=,即=,∴AF=t,則EF=AE-AF=5-t,即y=5-t(0≤t≤4);如圖2,當點P在射線AB上運動時,即t>4,此時,EF=AF-AE=t-5,即y=t-5(t>4);綜上,;(3)以點F為圓心的⊙F恰好與直線AB、BC相切時,PF=FG,分以下三種情況:①當t=0或t=4時,顯然符合條件的⊙F不存在;②當0<t<4時,如解圖1,作FG⊥
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國方型平尺數據監測研究報告
- 2025至2030年中國錄音機木外殼數據監測研究報告
- 2025至2030年中國底盤系統配件數據監測研究報告
- 2025至2030年中國帶裝飾板型油煙罩數據監測研究報告
- 2025至2030年中國女式服裝帽數據監測研究報告
- 2025至2030年中國吐絲機數據監測研究報告
- 2025至2030年中國可編程升降機數據監測研究報告
- 2025至2030年中國發光屏數據監測研究報告
- 全數字化健康服務創新模式的探索與實踐
- 從基礎到專業醫療團隊協作的培養計劃
- 老舊小區房屋改造工程監理大綱
- 小學四年級下學期英語閱讀理解
- 房地產廣告圍擋施工投標文件范本
- 食品添加劑、食品污染物的本底與轉化來源
- DB43∕T 498-2009 博落回葉-行業標準
- 大慶油田第五采油廠杏四聚聯合站工程轉油放水站二期工程施工組織設計
- 心力衰竭病人的護理查房pptppt(ppt)課件
- 大年初一沒下雪 短文小說
- 中小學生守則ppt課件(18頁PPT)
- 應急物資領用(返還)登記表
- 二次函數的應用——橋洞問題
評論
0/150
提交評論