2022年吉林省長春市一五一中數學高三第一學期期末學業水平測試試題含解析_第1頁
2022年吉林省長春市一五一中數學高三第一學期期末學業水平測試試題含解析_第2頁
2022年吉林省長春市一五一中數學高三第一學期期末學業水平測試試題含解析_第3頁
2022年吉林省長春市一五一中數學高三第一學期期末學業水平測試試題含解析_第4頁
2022年吉林省長春市一五一中數學高三第一學期期末學業水平測試試題含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數(為虛數單位),則下列說法正確的是()A.的虛部為 B.復數在復平面內對應的點位于第三象限C.的共軛復數 D.2.已知為虛數單位,若復數滿足,則()A. B. C. D.3.已知數列滿足:,則()A.16 B.25 C.28 D.334.雙曲線的漸近線方程為()A. B. C. D.5.已知函數的圖像向右平移個單位長度后,得到的圖像關于軸對稱,,當取得最小值時,函數的解析式為()A. B.C. D.6.已知復數,其中為虛數單位,則()A. B. C.2 D.7.若雙曲線的一條漸近線與直線垂直,則該雙曲線的離心率為()A.2 B. C. D.8.已知函數是定義在上的偶函數,且在上單調遞增,則()A. B.C. D.9.展開項中的常數項為A.1 B.11 C.-19 D.5110.已知,,,,.若實數,滿足不等式組,則目標函數()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值11.執行如圖所示的程序框圖,輸出的結果為()A. B. C. D.12.若向量,則()A.30 B.31 C.32 D.33二、填空題:本題共4小題,每小題5分,共20分。13.在中,點在邊上,且,設,,則________(用,表示)14.已知,,分別為內角,,的對邊,,,,則的面積為__________.15.已知圓柱的兩個底面的圓周在同一個球的球面上,圓柱的高和球半徑均為2,則該圓柱的底面半徑為__________.16.近年來,新能源汽車技術不斷推陳出新,新產品不斷涌現,在汽車市場上影響力不斷增大.動力蓄電池技術作為新能源汽車的核心技術,它的不斷成熟也是推動新能源汽車發展的主要動力.假定現在市售的某款新能源汽車上,車載動力蓄電池充放電循環次數達到2000次的概率為85%,充放電循環次數達到2500次的概率為35%.若某用戶的自用新能源汽車已經經過了2000次充電,那么他的車能夠充電2500次的概率為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在四棱錐中,底面是棱長為2的正方形,側面為正三角形,且面面,分別為棱的中點.(1)求證:平面;(2)求二面角的正切值.18.(12分)已知函數.(1)若關于的不等式的整數解有且僅有一個值,當時,求不等式的解集;(2)已知,若,使得成立,求實數的取值范圍.19.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點.(1)求證:;(2)求二面角的大小.20.(12分)在中,內角的對邊分別為,且(1)求;(2)若,且面積的最大值為,求周長的取值范圍.21.(12分)已知正項數列的前項和.(1)若數列為等比數列,求數列的公比的值;(2)設正項數列的前項和為,若,且.①求數列的通項公式;②求證:.22.(10分)在平面直角坐標系xOy中,已知平行于x軸的動直線l交拋物線C:于點P,點F為C的焦點.圓心不在y軸上的圓M與直線l,PF,x軸都相切,設M的軌跡為曲線E.(1)求曲線E的方程;(2)若直線與曲線E相切于點,過Q且垂直于的直線為,直線,分別與y軸相交于點A,當線段AB的長度最小時,求s的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】

利用的周期性先將復數化簡為即可得到答案.【詳解】因為,,,所以的周期為4,故,故的虛部為2,A錯誤;在復平面內對應的點為,在第二象限,B錯誤;的共軛復數為,C錯誤;,D正確.故選:D.【點睛】本題考查復數的四則運算,涉及到復數的虛部、共軛復數、復數的幾何意義、復數的模等知識,是一道基礎題.2、A【解析】分析:題設中復數滿足的等式可以化為,利用復數的四則運算可以求出.詳解:由題設有,故,故選A.點睛:本題考查復數的四則運算和復數概念中的共軛復數,屬于基礎題.3、C【解析】

依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.4、C【解析】

根據雙曲線的標準方程,即可寫出漸近線方程.【詳解】雙曲線,雙曲線的漸近線方程為,故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質,屬于容易題.5、A【解析】

先求出平移后的函數解析式,結合圖像的對稱性和得到A和.【詳解】因為關于軸對稱,所以,所以,的最小值是.,則,所以.【點睛】本題主要考查三角函數的圖像變換及性質.平移圖像時需注意x的系數和平移量之間的關系.6、D【解析】

把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.7、B【解析】

由題中垂直關系,可得漸近線的方程,結合,構造齊次關系即得解【詳解】雙曲線的一條漸近線與直線垂直.∴雙曲線的漸近線方程為.,得.則離心率.故選:B【點睛】本題考查了雙曲線的漸近線和離心率,考查了學生綜合分析,概念理解,數學運算的能力,屬于中檔題.8、C【解析】

根據題意,由函數的奇偶性可得,,又由,結合函數的單調性分析可得答案.【詳解】根據題意,函數是定義在上的偶函數,則,,有,又由在上單調遞增,則有,故選C.【點睛】本題主要考查函數的奇偶性與單調性的綜合應用,注意函數奇偶性的應用,屬于基礎題.9、B【解析】

展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.10、B【解析】

判斷直線與縱軸交點的位置,畫出可行解域,即可判斷出目標函數的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標函數一定有最大值和最小值.故選:B【點睛】本題考查了目標函數最值是否存在問題,考查了數形結合思想,考查了不等式的性質應用.11、D【解析】

由程序框圖確定程序功能后可得出結論.【詳解】執行該程序可得.故選:D.【點睛】本題考查程序框圖.解題可模擬程序運行,觀察變量值的變化,然后可得結論,也可以由程序框圖確定程序功能,然后求解.12、C【解析】

先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

結合圖形及向量的線性運算將轉化為用向量表示,即可得到結果.【詳解】在中,因為,所以,又因為,所以.故答案為:【點睛】本題主要考查三角形中向量的線性運算,關鍵是利用已知向量為基底,將未知向量通過幾何條件向基底轉化.14、【解析】

根據題意,利用余弦定理求得,再運用三角形的面積公式即可求得結果.【詳解】解:由于,,,∵,∴,,由余弦定理得,解得,∴的面積.故答案為:.【點睛】本題考查余弦定理的應用和三角形的面積公式,考查計算能力.15、【解析】

由圓柱外接球的性質,即可求得結果.【詳解】解:由于圓柱的高和球半徑均為2,,則球心到圓柱底面的距離為1,設圓柱底面半徑為,由已知有,∴,即圓柱的底面半徑為.故答案為:.【點睛】本題考查由圓柱的外接球的性質求圓柱底面半徑,屬于基礎題.16、【解析】

記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:,由條件概率公式即得解.【詳解】記“某用戶的自用新能源汽車已經經過了2000次充電”為事件A,“他的車能夠充電2500次”為事件B,即求條件概率:故答案為:【點睛】本題考查了條件概率的應用,考查了學生概念理解,數學應用,數學運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見證明;(2)【解析】

(1)取PD中點G,可證EFGA是平行四邊形,從而,得證線面平行;(2)取AD中點O,連結PO,可得面,連交于,可證是二面角的平面角,再在中求解即得.【詳解】(1)證明:取PD中點G,連結為的中位線,且,又且,且,∴EFGA是平行四邊形,則,又面,面,面;(2)解:取AD中點O,連結PO,∵面面,為正三角形,面,且,連交于,可得,,則,即.連,又,可得平面,則,即是二面角的平面角,在中,∴,即二面角的正切值為.【點睛】本題考查線面平行證明,考查求二面角.求二面角的步驟是一作二證三計算.即先作出二面角的平面角,然后證明此角是要求的二面角的平面角,最后在三角形中計算.18、(1)(2)【解析】

(1)求解不等式,結合整數解有且僅有一個值,可得,分類討論,求解不等式,即得解;(2)轉化,使得成立為,利用不等式性質,求解二次函數最小值,代入解不等式即可.【詳解】(1)不等式,即,所以,由,解得.因為,所以,當時,,不等式等價于或或即或或,故,故不等式的解集為.(2)因為,由,可得,又由,使得成立,則,解得或.故實數的取值范圍為.【點睛】本題考查了絕對值不等式的求解和恒成立問題,考查了學生轉化劃歸,分類討論,數學運算的能力,屬于中檔題.19、(1)證明見解析;(2)60°.【解析】試題分析:(1)連結PD,由題意可得,則AB⊥平面PDE,;(2)法一:結合幾何關系做出二面角的平面角,計算可得其正切值為,故二面角的大小為;法二:以D為原點建立空間直角坐標系,計算可得平面PBE的法向量.平面PAB的法向量為.據此計算可得二面角的大小為.試題解析:(1)連結PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點建立空間直角坐標系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設二面角的大小為,由圖知,,所以即二面角的大小為.20、(1)(2)【解析】

(1)利用二倍角公式及三角形內角和定理,將化簡為,求出的值,結合,求出A的值;(2)寫出三角形的面積公式,由其最大值為求出.由余弦定理,結合,,求出的范圍,注意.進而求出周長的范圍.【詳解】解:(1)整理得解得或(舍去)又;(2)由題意知,又,,又周長的取值范圍是【點睛】本題考查了二倍角余弦公式,三角形面積公式,余弦定理的應用,求三角形的周長的范圍問題.屬于中檔題.21、(1);(2)①;②詳見解析.【解析】

(1)依題意可表示,,相減得,由等比數列通項公式轉化為首項與公比,解得答案,并由其都是正項數列舍根;(2)①由題意可表示,,兩式相減得,由其都是正項并整理可得遞推關系,由等差數列的通項公式即可得答案;②由已知關系,表示并相減即可表示遞推關系,顯然當時,成立,當,時,表示,由分組求和與正項數列性質放縮不等式得證.【詳解】解:(1)依題意可得,,兩式相減,得,所以,因為,所以,且,解得.(2)①因為,所以,兩式相減,得,即.因為,所以,即.而當時,,可得,故,所以對任意的正整數都成立,所以數列是等差數列,公差為1,首項為1,所以數列的通項公式為.②因為,所以,兩式相減,得,即,所以對任意的正整數,都有.令,而當時,顯然成立,所以當,時,,所以,即,所以,得證.【點睛】本題考查由前n項和關系求等比數列公比,求等差數列通項公式,還考查了由分組求和表示數列和并由正項數列放縮證明不等式,屬于難題.22、(1),(2).【解析】

根據題意設,可得PF的方程,根據距離即可求出;點Q處的切線的斜率存在,由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論