




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知復數,(為虛數單位),若為純虛數,則()A. B.2 C. D.2.五行學說是華夏民族創造的哲學思想,是華夏文明重要組成部分.古人認為,天下萬物皆由金、木、水、火、土五類元素組成,如圖,分別是金、木、水、火、土彼此之間存在的相生相克的關系.若從5類元素中任選2類元素,則2類元素相生的概率為()A. B. C. D.3.若,則的虛部是A.3 B. C. D.4.“”是“直線與互相平行”的()A.充分不必要條件 B.必要不充分條件 C.充要條件 D.既不充分也不必要條件5.如圖,在中,點是的中點,過點的直線分別交直線,于不同的兩點,若,,則()A.1 B. C.2 D.36.如圖,拋物線:的焦點為,過點的直線與拋物線交于,兩點,若直線與以為圓心,線段(為坐標原點)長為半徑的圓交于,兩點,則關于值的說法正確的是()A.等于4 B.大于4 C.小于4 D.不確定7.對于正在培育的一顆種子,它可能1天后發芽,也可能2天后發芽,….下表是20顆不同種子發芽前所需培育的天數統計表,則這組種子發芽所需培育的天數的中位數是()發芽所需天數1234567種子數43352210A.2 B.3 C.3.5 D.48.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.9.若不相等的非零實數,,成等差數列,且,,成等比數列,則()A. B. C.2 D.10.若的二項展開式中的系數是40,則正整數的值為()A.4 B.5 C.6 D.711.我國著名數學家陳景潤在哥德巴赫猜想的研究中取得了世界矚目的成就,哥德巴赫猜想內容是“每個大于的偶數可以表示為兩個素數的和”(注:如果一個大于的整數除了和自身外無其他正因數,則稱這個整數為素數),在不超過的素數中,隨機選取個不同的素數、,則的概率是()A. B. C. D.12.設為定義在上的奇函數,當時,(為常數),則不等式的解集為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.現有5人要排成一排照相,其中甲與乙兩人不相鄰,且甲不站在兩端,則不同的排法有____種.(用數字作答)14.函數的圖象在處的切線方程為__________.15.某校初三年級共有名女生,為了了解初三女生分鐘“仰臥起坐”項目訓練情況,統計了所有女生分鐘“仰臥起坐”測試數據(單位:個),并繪制了如下頻率分布直方圖,則分鐘至少能做到個仰臥起坐的初三女生有_____________個.16.已知函數的圖象在點處的切線方程是,則的值等于__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)解不等式;(2)記函數的最大值為,若,證明:.18.(12分)某商場舉行有獎促銷活動,顧客購買每滿元的商品即可抽獎一次.抽獎規則如下:抽獎者擲各面標有點數的正方體骰子次,若擲得點數大于,則可繼續在抽獎箱中抽獎;否則獲得三等獎,結束抽獎,已知抽獎箱中裝有個紅球與個白球,抽獎者從箱中任意摸出個球,若個球均為紅球,則獲得一等獎,若個球為個紅球和個白球,則獲得二等獎,否則,獲得三等獎(抽獎箱中的所有小球,除顏色外均相同).若,求顧客參加一次抽獎活動獲得三等獎的概率;若一等獎可獲獎金元,二等獎可獲獎金元,三等獎可獲獎金元,記顧客一次抽獎所獲得的獎金為,若商場希望的數學期望不超過元,求的最小值.19.(12分)已知函數(為常數)(Ⅰ)當時,求的單調區間;(Ⅱ)若為增函數,求實數的取值范圍.20.(12分)在直角坐標平面中,已知的頂點,,為平面內的動點,且.(1)求動點的軌跡的方程;(2)設過點且不垂直于軸的直線與交于,兩點,點關于軸的對稱點為,證明:直線過軸上的定點.21.(12分)已知函數,不等式的解集為.(1)求實數,的值;(2)若,,,求證:.22.(10分)以直角坐標系的原點為極坐標系的極點,軸的正半軸為極軸.已知曲線的極坐標方程為,是上一動點,,點的軌跡為.(1)求曲線的極坐標方程,并化為直角坐標方程;(2)若點,直線的參數方程(為參數),直線與曲線的交點為,當取最小值時,求直線的普通方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
把代入,利用復數代數形式的除法運算化簡,由實部為0且虛部不為0求解即可.【詳解】∵,∴,∵為純虛數,∴,解得.故選C.【點睛】本題考查復數代數形式的除法運算,考查復數的基本概念,是基礎題.2、A【解析】
列舉出金、木、水、火、土任取兩個的所有結果共10種,其中2類元素相生的結果有5種,再根據古典概型概率公式可得結果.【詳解】金、木、水、火、土任取兩類,共有:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土10種結果,其中兩類元素相生的有火木、火土、木水、水金、金土共5結果,所以2類元素相生的概率為,故選A.【點睛】本題主要考查古典概型概率公式的應用,屬于基礎題,利用古典概型概率公式求概率時,找準基本事件個數是解題的關鍵,基本亊件的探求方法有(1)枚舉法:適合給定的基本事件個數較少且易一一列舉出的;(2)樹狀圖法:適合于較為復雜的問題中的基本亊件的探求.在找基本事件個數時,一定要按順序逐個寫出:先,….,再,…..依次….…這樣才能避免多寫、漏寫現象的發生.3、B【解析】
因為,所以的虛部是.故選B.4、A【解析】
利用兩條直線互相平行的條件進行判定【詳解】當時,直線方程為與,可得兩直線平行;若直線與互相平行,則,解得,,則“”是“直線與互相平行”的充分不必要條件,故選【點睛】本題主要考查了兩直線平行的條件和性質,充分條件,必要條件的定義和判斷方法,屬于基礎題.5、C【解析】
連接AO,因為O為BC中點,可由平行四邊形法則得,再將其用,表示.由M、O、N三點共線可知,其表達式中的系數和,即可求出的值.【詳解】連接AO,由O為BC中點可得,,、、三點共線,,.故選:C.【點睛】本題考查了向量的線性運算,由三點共線求參數的問題,熟記向量的共線定理是關鍵.屬于基礎題.6、A【解析】
利用的坐標為,設直線的方程為,然后聯立方程得,最后利用韋達定理求解即可【詳解】據題意,得點的坐標為.設直線的方程為,點,的坐標分別為,.討論:當時,;當時,據,得,所以,所以.【點睛】本題考查直線與拋物線的相交問題,解題核心在于聯立直線與拋物線的方程,屬于基礎題7、C【解析】
根據表中數據,即可容易求得中位數.【詳解】由圖表可知,種子發芽天數的中位數為,故選:C.【點睛】本題考查中位數的計算,屬基礎題.8、D【解析】
這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.9、A【解析】
由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數列,所以,又,,成等比數列,所以,消去得,所以,解得或,因為,,是不相等的非零實數,所以,此時,所以.故選:A【點睛】本題考查了等差等比數列的綜合應用,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.10、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎題11、B【解析】
先列舉出不超過的素數,并列舉出所有的基本事件以及事件“在不超過的素數中,隨機選取個不同的素數、,滿足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【詳解】不超過的素數有:、、、、、,在不超過的素數中,隨機選取個不同的素數,所有的基本事件有:、、、、、、、、、、、、、、,共種情況,其中,事件“在不超過的素數中,隨機選取個不同的素數、,且”包含的基本事件有:、、、,共種情況,因此,所求事件的概率為.故選:B.【點睛】本題考查古典概型概率的計算,一般利用列舉法列舉出基本事件,考查計算能力,屬于基礎題.12、D【解析】
由可得,所以,由為定義在上的奇函數結合增函數+增函數=增函數,可知在上單調遞增,注意到,再利用函數單調性即可解決.【詳解】因為在上是奇函數.所以,解得,所以當時,,且時,單調遞增,所以在上單調遞增,因為,故有,解得.故選:D.【點睛】本題考查利用函數的奇偶性、單調性解不等式,考查學生對函數性質的靈活運用能力,是一道中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、36【解析】
先優先考慮甲、乙兩人不相鄰的排法,在此條件下,計算甲不排在兩端的排法,最后相減即可得到結果.【詳解】由題意得5人排成一排,甲、乙兩人不相鄰,有種排法,其中甲排在兩端,有種排法,則6人排成一排,甲、乙兩人不相鄰,且甲不排在兩端,共有(種)排法.所以本題答案為36.【點睛】排列、組合問題由于其思想方法獨特,計算量龐大,對結果的檢驗困難,所以在解決這類問題時就要遵循一定的解題原則,如特殊元素、位置優先原則、先取后排原則、先分組后分配原則、正難則反原則等,只有這樣我們才能有明確的解題方向.同時解答組合問題時必須心思細膩、考慮周全,這樣才能做到不重不漏,正確解題.14、【解析】
利用導數的幾何意義,對求導后在計算在處導函數的值,再利用點斜式列出方程化簡即可.【詳解】,則切線的斜率為.又,所以函數的圖象在處的切線方程為,即.故答案為:【點睛】本題主要考查了根據導數的幾何意義求解函數在某點處的切線方程問題,需要注意求導法則與計算,屬于基礎題.15、【解析】
根據數據先求出,再求出分鐘至少能做到個仰臥起坐的初三女生人數即可.【詳解】解:,.則分鐘至少能做到個仰臥起坐的初三女生人數為.故答案為:.【點睛】本題主要考查頻率分布直方圖,屬于基礎題.16、【解析】
利用導數的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點睛】本題考查導數的幾何意義,要注意在某點的切線與過某點的切線的區別,本題屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)證明見解析【解析】
(1)將函數整理為分段函數形式可得,進而分類討論求解不等式即可;(2)先利用絕對值不等式的性質得到的最大值為3,再利用均值定理證明即可.【詳解】(1)①當時,恒成立,;②當時,,即,;③當時,顯然不成立,不合題意;綜上所述,不等式的解集為.(2)由(1)知,于是由基本不等式可得(當且僅當時取等號)(當且僅當時取等號)(當且僅當時取等號)上述三式相加可得(當且僅當時取等號),,故得證.【點睛】本題考查解絕對值不等式和利用均值定理證明不等式,考查絕對值不等式的最值的應用,解題關鍵是掌握分類討論解決帶絕對值不等式的方法,考查了分析能力和計算能力,屬于中檔題.18、;.【解析】
設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,求出;由題意可知,隨機變量的可能取值為,,,相應求出概率,求出期望,化簡得,由題意可知,,即,求出的最小值.【詳解】設顧客獲得三等獎為事件,因為顧客擲得點數大于的概率為,顧客擲得點數小于,然后抽將得三等獎的概率為,所以;由題意可知,隨機變量的可能取值為,,,且,,,所以隨機變量的數學期望,,化簡得,由題意可知,,即,化簡得,因為,解得,即的最小值為.【點睛】本題主要考查概率和期望的求法,屬于常考題.19、(Ⅰ)單調遞增區間為,;單調遞減區間為;(Ⅱ).【解析】
(Ⅰ)對函數進行求導,利用導數判斷函數的單調性即可;(Ⅱ)對函數進行求導,由題意知,為增函數等價于在區間恒成立,利用分離參數法和基本不等式求最值即可求出實數的取值范圍.【詳解】(Ⅰ)由題意知,函數的定義域為,當時,,令,得,或,所以,隨的變化情況如下表:遞增遞減遞增的單調遞增區間為,,單調遞減區間為.(Ⅱ)由題意得在區間恒成立,即在區間恒成立.,當且僅當,即時等號成立.所以,所以的取值范圍是.【點睛】本題考查利用導數求函數的單調區間、利用分離參數法和基本不等式求最值求參數的取值范圍;考查運算求解能力和邏輯推理能力;利用導數把函數單調性問題轉化為不等式恒成立問題是求解本題的關鍵;屬于中檔題、常考題型.20、(1)();(2)證明見解析.【解析】
(1)設點,分別用表示、表示和余弦定理表示,將表示為、的方程,再化簡即可;(2)設直線方程代入的軌跡方程,得,設點,,,表示出直線,取,得,即可證明直線過軸上的定點.【詳解】(1)設,由已知,∴,∴(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣東碧桂園職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年崇左幼兒師范高等??茖W校高職單招(數學)歷年真題考點含答案解析
- 2025年山東理工職業學院高職單招職業技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025年山東化工職業學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2017年國考培訓課件
- 建筑工程合同管理培訓
- 人教版數學六年級下冊試題第一單元負數檢測卷(二)含答案
- 人教版數學六年級下冊2百分數(二)-利率(教案)
- 人教版數學第二單元百分數(二)重難點檢測卷(單元測試)小學六年級下冊含答案
- 2017小學生課件教學課件
- 部編人教版二年級道德與法治下冊同步練習(全冊)
- 第九講 全面依法治國PPT習概論2023優化版教學課件
- 7.4.2 超幾何分布 課件(26張)
- 蘇教版小學數學三年級下冊期中測試卷(3套含答案)
- 畢業設計(論文)-ZJ-600型羅茨真空泵設計
- 2022-2023學年湖北省武漢市重點中學5G聯合體高一(下)期中英語試卷及參考答案
- 生產異常處理流程圖來料工藝及制程
- 有機朗肯循環(ORC)中低溫余熱發電與工業余熱利用
- 抗菌藥物臨床應用指導原則(2023年版)
- 語文課程標準解讀及實踐:五下第二單元課本劇《猴王出世》劇本
- 2023年南通市特殊教育崗位教師招聘考試筆試題庫及答案解析
評論
0/150
提交評論