




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.生物興趣小組的學生,將自己收集的標本向本組其他成員各贈送一件,全組共互增了182件.如果全組共有x名同學,則根據題意列出的方程是().A.x(x+1)=182 B.x(x+1)=182×C.x(x-1)=182 D.x(x-1)=182×22.如圖,在△ABC中,點D是BC的中點,點E是AC的中點,若DE=3,則AB等于()A.4 B.5 C.5.5 D.63.若拋物線y=ax2+2x﹣10的對稱軸是直線x=﹣2,則a的值為()A.2 B.1 C.-0.5 D.0.54.順次連接平行四邊形四邊的中點所得的四邊形是()A.矩形 B.菱形 C.正方形 D.平行四邊形5.已知點O是△ABC的外心,作正方形OCDE,下列說法:①點O是△AEB的外心;②點O是△ADC的外心;③點O是△BCE的外心;④點O是△ADB的外心.其中一定不成立的說法是()A.②④ B.①③ C.②③④ D.①③④6.某校決定從三名男生和兩名女生中選出兩名同學擔任校藝術節文藝演出專場的主持人,則選出的恰為一男一女的概率是()A. B. C. D.7.下列事件中,必然事件是()A.任意擲一枚均勻的硬幣,正面朝上B.從一副撲克牌中,隨意抽出一張是大王C.通常情況下,拋出的籃球會下落D.三角形內角和為360°8.一張圓心角為的扇形紙板和圓形紙板按如圖方式剪得一個正方形,邊長都為4,已知,則扇形紙板和圓形紙板的半徑之比是()A. B. C. D.9.在一個布袋中裝有紅、白兩種顏色的小球,它們除顏色外沒有任何其他區別.其中紅球若干,白球5個,袋中的球已攪勻.若從袋中隨機取出1個球,取出紅球的可能性大,則紅球的個數是()A.4個 B.5個 C.不足4個 D.6個或6個以上10.已知關于x的方程x2-kx-6=0的一個根為x=-3,則實數k的值為()A.1 B.-1 C.2 D.-211.設a、b是兩個整數,若定義一種運算“△”,a△b=a2+b2+ab,則方程(x+2)△x=1的實數根是()A.x1=x2=1 B.x1=0,x2=1C.x1=x2=﹣1 D.x1=1,x2=﹣212.如圖,在邊長為4的菱形ABCD中,∠ABC=120°,對角線AC與BD相交于點O,以點O為圓心的圓與菱形ABCD的四邊都相切,則圖中陰影區域的面積為()A. B. C. D.二、填空題(每題4分,共24分)13.如圖,已知△ABC是面積為的等邊三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC與DE相交于點F,則△AEF的面積等于_____(結果保留根號).14.在直角坐標平面內有一點A(3,4),點A與原點O的連線與x軸的正半軸夾角為α,那么角α的余弦值是_____.15.已知線段a,b,c,d成比例線段,其中a=3cm,b=4cm,c=6cm,則d=_____cm;16.如圖,在以A為直角頂點的等腰直角三角形紙片ABC中,將B角折起,使點B落在AC邊上的點D(不與點A,C重合)處,折痕是EF.如圖1,當CD=AC時,tanα1=;如圖2,當CD=AC時,tanα2=;如圖3,當CD=AC時,tanα3=;……依此類推,當CD=AC(n為正整數)時,tanαn=_____.17.方程(x+5)2=4的兩個根分別為_____.18.一元二次方程5x2﹣1=4x的一次項系數是______.三、解答題(共78分)19.(8分)如圖,在平面直角坐標系xOy中,矩形OABC的頂點A在x軸的正半軸上,頂點C在y軸的正半軸上,D是BC邊上的一點,OC:CD=5:3,DB=1.反比例函數y=(k≠0)在第一象限內的圖象經過點D,交AB于點E,AE:BE=1:2.(1)求這個反比例函數的表達式;(2)動點P在矩形OABC內,且滿足S△PAO=S四邊形OABC.①若點P在這個反比例函數的圖象上,求點P的坐標;②若點Q是平面內一點使得以A、B、P、Q為頂點的四邊形是菱形求點Q的坐標.20.(8分)如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.(1)求y與x之間的函數關系式;(2)直接寫出當x>0時,不等式x+b>的解集;(3)若點P在x軸上,連接AP把△ABC的面積分成1:3兩部分,求此時點P的坐標.21.(8分)如圖,四邊形內接于,是的直徑,點在的延長線上,延長交的延長線于點,點是的中點,.(1)求證:是的切線;(2)求證:是等腰三角形;(3)若,,求的值及的長.22.(10分)如圖是四個全等的小矩形組成的圖形,這些矩形的頂點稱為格點.△ABC是格點三角形(頂點是格點的三角形)(1)若每個小矩形的較短邊長為1,則BC=;(2)①在圖1、圖2中分別畫一個格點三角形(頂點是格點的三角形),使它們都與△ABC相似(但不全等),且圖1,2中所畫三角形也不全等).②在圖3中只用直尺(沒有刻度)畫出△ABC的重心M.(保留痕跡,點M用黑點表示,并注上字母M)23.(10分)空間任意選定一點,以點為端點,作三條互相垂直的射線,,.這三條互相垂直的射線分別稱作軸、軸、軸,統稱為坐標軸,它們的方向分別為(水平向前),(水平向右),(豎直向上)方向,這樣的坐標系稱為空間直角坐標系.將相鄰三個面的面積記為,,,且的小長方體稱為單位長方體,現將若干個單位長方體在空間直角坐標系內進行碼放,要求碼放時將單位長方體所在的面與軸垂直,所在的面與軸垂直,所在的面與軸垂直,如圖1所示.若將軸方向表示的量稱為幾何體碼放的排數,軸方向表示的量稱為幾何體碼放的列數,二軸方向表示的量稱為幾何體碼放的層數;如圖2是由若干個單位長方體在空間直角坐標內碼放的一個幾何體,其中這個幾何體共碼放了排列層,用有序數組記作,如圖3的幾何體碼放了排列層,用有序數組記作.這樣我們就可用每一個有序數組表示一種幾何體的碼放方式.(1)有序數組所對應的碼放的幾何體是______________;A.B.C.D.(2)圖4是由若干個單位長方體碼放的一個幾何體的三視圖,則這種碼放方式的有序數組為(______,_______,_______),組成這個幾何體的單位長方體的個數為____________個.(3)為了進一步探究有序數組的幾何體的表面積公式,某同學針對若干個單位長方體進行碼放,制作了下列表格:幾何體有序數組單位長方體的個數表面上面積為S1的個數表面上面積為S2的個數表面上面積為S3的個數表面積根據以上規律,請直接寫出有序數組的幾何體表面積的計算公式;(用,,,,,表示)(4)當,,時,對由個單位長方體碼放的幾何體進行打包,為了節約外包裝材料,我們可以對個單位長方體碼放的幾何體表面積最小的規律進行探究,請你根據自己探究的結果直接寫出使幾何體表面積最小的有序數組,這個有序數組為(______,_______,______),此時求出的這個幾何體表面積的大小為____________(縫隙不計)24.(10分)為倡導節能環保,降低能源消耗,提倡環保型新能源開發,造福社會.某公司研發生產一種新型智能環保節能燈,成本為每件40元.市場調查發現,該智能環保節能燈每件售價y(元)與每天的銷售量為x(件)的關系如圖,為推廣新產品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.(1)求每件銷售單價y(元)與每天的銷售量為x(件)的函數關系式并直接寫出自變量x的取值范圍;(2)設該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?(3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環保節能燈國家給予公司補貼m(m≤40)元.在獲得國家每件m元補貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是(直接寫出結果).25.(12分)如圖,方格紙中每個小正方形的邊長都是1個單位長度,△ABC在平面直角坐標系中的位置如圖所示.(1)將△ABC向上平移3個單位后,得到△A1B1C1,請畫出△A1B1C1,并直接寫出點A1的坐標.(2)將△ABC繞點O順時針旋轉90°,請畫出旋轉后的△A2B2C2,并求點B所經過的路徑長(結果保留π)26.為加強中小學生安全教育,某校組織了“防溺水”知識競賽,對表現優異的班級進行獎勵,學校購買了若干副乒乓球拍和羽毛球拍,購買2副乒乓球拍和1副羽毛球拍共需116元;購買3副乒乓球拍和2副羽毛球拍共需204元.(1)求購買1副乒乓球拍和1副羽毛球拍各需多少元;(2)若學校購買乒乓球拍和羽毛球拍共30幅,且支出不超過1480元,則最多能夠購買多少副羽毛球拍?
參考答案一、選擇題(每題4分,共48分)1、C【解析】試題分析:先求每名同學贈的標本,再求x名同學贈的標本,而已知全組共互贈了182件,故根據等量關系可得到方程.每名同學所贈的標本為:(x-1)件,那么x名同學共贈:x(x-1)件,根據題意可列方程:x(x-1)=182,故選C.考點:本題考查的是根據實際問題列一元二次方程點評:找到關鍵描述語,找到等量關系,然后準確的列出方程是解答本題的關鍵.2、D【分析】由兩個中點連線得到DE是中位線,根據DE的長度即可得到AB的長度.【詳解】∵點D是BC的中點,點E是AC的中點,∴DE是△ABC的中位線,∴AB=2DE=6,故選:D.【點睛】此題考查三角形的中位線定理,三角形兩邊中點的連線是三角形的中位線,平行于三角形的第三邊,且等于第三邊的一半.3、D【分析】根據拋物線y=ax2+bx+c(a≠0)的對稱軸方程得到,然后求出a即可.【詳解】解:∵拋物線y=ax2+2x﹣10的對稱軸是直線x=﹣2,∴,∴;故選:D.【點睛】本題考查了二次函數的圖象:二次函數y=ax2+bx+c(a≠0)的圖象為拋物線,當a>0;對稱軸為直線;拋物線與y軸的交點坐標為(0,c);當b2-4ac>0,拋物線與x軸有兩個交點;當b2-4ac=0,拋物線與x軸有一個交點;當b2-4ac<0,拋物線與x軸沒有交點.4、D【解析】試題分析:順次連接四邊形四邊的中點所得的四邊形是平行四邊形,如果原四邊形的對角線互相垂直,那么所得的四邊形是矩形,如果原四邊形的對角線相等,那么所得的四邊形是菱形,如果原四邊形的對角線相等且互相垂直,那么所得的四邊形是正方形,因為平行四邊形的對角線不一定相等或互相垂直,因此得平行四邊形.故選D.考點:中點四邊形的形狀判斷.5、A【分析】根據三角形的外心得出OA=OC=OB,根據正方形的性質得出OA=OC<OD,求出OA=OB=OC=OE≠OD,再逐個判斷即可.【詳解】解:如圖,連接OB、OD、OA,∵O為銳角三角形ABC的外心,∴OA=OC=OB,∵四邊形OCDE為正方形,∴OA=OC<OD,∴OA=OB=OC=OE≠OD,∴OA=OC≠OD,即O不是△ADC的外心,OA=OE=OB,即O是△AEB的外心,OB=OC=OE,即O是△BCE的外心,OB=OA≠OD,即O不是△ABD的外心,故選:A.【點睛】本題考查了正方形的性質和三角形的外心.熟記三角形的外心到三個頂點的距離相等是解決此題的關鍵.6、B【解析】試題解析:列表如下:∴共有20種等可能的結果,P(一男一女)=.
故選B.7、C【分析】根據事件發生的可能性大小判斷相應事件的類型即可.【詳解】任意擲一枚均勻的硬幣,正面朝上是隨機事件;從一副撲克牌中,隨意抽出一張是大王是隨機事件;通常情況下,拋出的籃球會下落是必然事件;三角形內角和為360°是不可能事件,故選C.【點睛】本題考查隨機事件.8、A【分析】分別求出扇形和圓的半徑,即可求出比值.【詳解】如圖,連接OD,∵四邊形ABCD是正方形,∴∠DCB=∠ABO=90°,AB=BC=CD=4,∵=,∴OB=AB=3,∴CO=7由勾股定理得:OD==r1;如圖2,連接MB、MC,∵四邊形ABCD是⊙M的內接四邊形,四邊形ABCD是正方形,∴∠BMC=90°,MB=MC,∴∠MCB=∠MBC=45°,∵BC=4,∴MC=MB==r2∴扇形和圓形紙板的半徑比是:=故選:A.【點睛】本題考查了正方形性質、圓內接四邊形性質;解此題的關鍵是求出扇形和圓的半徑,題目比較好,難度適中.9、D【解析】由取出紅球的可能性大知紅球的個數比白球個數多,據此可得答案.【詳解】解:∵袋子中白球有5個,且從袋中隨機取出1個球,取出紅球的可能性大,∴紅球的個數比白球個數多,∴紅球個數滿足6個或6個以上,故選:D.【點睛】本題主要考查可能性大小,只要在總情況數目相同的情況下,比較其包含的情況總數即可.10、B【分析】一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數的值.即用這個數代替未知數所得式子仍然成立.【詳解】解:因為x=-3是原方程的根,所以將x=-3代入原方程,即(-3)2+3k?6=0成立,解得k=-1.故選:B.【點睛】本題考查的是一元二次方程的根即方程的解的定義,解題的關鍵是把方程的解代入進行求解.11、C【解析】根據題中的新定義將所求方程化為普通方程,整理成一般形式,左邊化為完全平方式,用直接開平方的方法解方程即可.【詳解】解:∵a△b=a2+b2+ab,∴(x+2)△x=(x+2)2+x2+x(x+2)=1,整理得:x2+2x+1=0,即(x+1)2=0,解得:x1=x2=﹣1.故選:C.【點睛】此題考查了解一元二次方程﹣配方法,利用此方法解方程時,首先將方程二次項系數化為1,常數項移到方程右邊,然后方程左右兩邊都加上一次項系數一半的平方,左邊化為完全平方式,右邊合并為一個非負常數,開方轉化為兩個一元一次方程來求解.12、C【分析】如圖,分別過O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,則.分別求出上式中各量即可得到解答.【詳解】如圖,過O作OE⊥AB于E,由題意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故選C.【點睛】本題考查圓的綜合應用,在審清題意的基礎上把圖形分割成幾塊計算后再綜合是解題關鍵.二、填空題(每題4分,共24分)13、【分析】如圖,過點F作FH⊥AE交AE于H,過點C作CM⊥AB交AB于M,根據等邊三角形的性質可求出AB的長,根據相似三角形的性質可得△ADE是等邊三角形,可得出AE的長,根據角的和差關系可得∠EAF=∠BAD=45°,設AH=HF=x,利用∠EFH的正確可用x表示出EH的長,根據AE=EH+AH列方程可求出x的值,根據三角形面積公式即可得答案.【詳解】如圖,過點F作FH⊥AE交AE于H,過點C作CM⊥AB交AB于M,∵△ABC是面積為的等邊三角形,CM⊥AB,∴×AB×CM=,∠BCM=30°,BM=AB,BC=AB,∴CM==,∴×AB×=,解得:AB=2,(負值舍去)∵△ABC∽△ADE,△ABC是等邊三角形,∴△ADE是等邊三角形,∠CAB=∠EAD=60°,∠E=60°,∴∠EAF+∠FAD=∠FAD+BAD=60°,∵∠BAD=45°,∴∠EAF=∠BAD=45°,∵FH⊥AE,∴∠AFH=45°,∠EFH=30°,∴AH=HF,設AH=HF=x,則EH=xtan30°=x.∵AB=2AD,AD=AE,∴AE=AB=1,∴x+x=1,解得x=.∴S△AEF=×1×=.故答案為:.【點睛】本題考查了相似三角形的性質,等邊三角形的性質,銳角三角函數,根據相似三角形的性質得出△ADE是等邊三角形、熟練掌握等邊三角形的性質并熟記特殊角的三角函數值是解題關鍵.14、【解析】根據勾股定理求出OA的長度,根據余弦等于鄰邊比斜邊求解即可.【詳解】∵點A坐標為(3,4),∴OA==5,∴cosα=,故答案為【點睛】本題主要考查銳角三角函數的概念,在直角三角形中,在直角三角形中,正弦等于對邊比斜邊;余弦等于鄰邊比斜邊;正切等于對邊比鄰邊,熟練掌握三角函數的概念是解題關鍵.15、3.【詳解】根據題意得:a:b=c:d,∵a=3cm,b=4cm,c=6cm,∴3:4=6:d,∴d=3cm.考點:3.比例線段;3.比例的性質.16、【分析】探究規律,利用規律解決問題即可.【詳解】觀察可知,正切值的分子是3,5,7,9,…,2n+1,分母與勾股數有關系,分別是勾股數3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中間一個.當,將故答案為:【點睛】本題考查規律型問題,解題的關鍵是學會探究規律的方法,屬于中考常考題型.17、x1=﹣7,x2=﹣3【分析】直接開平方法解一元二次方程即可.【詳解】解:∵(x+5)2=4,∴x+5=±2,∴x=﹣3或x=﹣7,故答案為:x1=﹣7,x2=﹣3【點睛】本題主要考查一元二次方程的解法中的直接開平方法,要求理解直接開平方法的適用類型,以及能夠針對不同類型的題選用合適的方法進行計算.18、-4【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常數且a≠0).在一般形式中ax2叫二次項,bx叫一次項,c是常數項.其中a,b,c分別叫二次項系數,一次項系數,常數項.【詳解】解:∵5x2﹣1=4x,方程整理得:5x2﹣4x﹣1=0,則一次項系數是﹣4,故答案為:﹣4【點睛】本題考查了一元二次方程的一般形式,解答本題要通過移項,轉化為一般形式,注意移項時符號的變化.三、解答題(共78分)19、(1)y=;(2)①(,4);②(1,3)或(3﹣2,﹣1).【分析】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n),利用反比例函數圖像上的點的坐標特征可求出m的值,之后進一步求出n的值,然后進一步求解即可;(2)根據三角形的面積公式與矩形的面積公式結合S△PAO=S四邊形OABC即可進一步求出P的縱坐標.①若點P在這個反比例函數的圖象上,利用反比例函數圖象上點的坐標特征可求出點P的坐標;②由點A,B的坐標及點P的總坐標可得出AP≠BP,進而可得出AB不能為對角線,設點P的坐標為(t,4),分AP=AB和BP=AB兩種情況考慮:(i)當AB=AP時,利用兩點間的距離公式可求出t值,進而可得出點P1的坐標,結合P1Q1的長可求出點Q1的坐標;(ii)當BP=AB時,利用兩點間的距離公式可求出t值,進而可得出點P2的坐標,結合P2Q2的長可求出點Q2的坐標.【詳解】(1)設點B的坐標為(m,n),則點E的坐標為(m,n),點D的坐標為(m﹣1,n).∵點D,E在反比例函數y=(k≠0)的圖象上,∴k=mn=(m﹣1)n,∴m=3.∵OC:CD=5:3,∴n:(m﹣1)=5:3,∴n=5,∴k=mn=×3×5=15,∴反比例函數的表達式為y=.(2)∵S△PAO=S四邊形OABC,∴OA?yP=OA?OC,∴yP=OC=4.當y=4時,=4,解得:x=,∴若點P在這個反比例函數的圖象上,點P的坐標為(,4).②由(1)可知:點A的坐標為(3,0),點B的坐標為(3,5),∵yP=4,yA+yB=5,∴,∴AP≠BP,∴AB不能為對角線.設點P的坐標為(t,4).分AP=AB和BP=AB兩種情況考慮(如圖所示):(i)當AB=AP時,(3﹣t)2+(4﹣0)2=52,解得:t1=1,t2=12(舍去),∴點P1的坐標為(1,4).又∵P1Q1=AB=5,∴點Q1的坐標為(1,3);(ii)當BP=AB時,(3﹣t)2+(5﹣4)2=52,解得:t3=3﹣2,t4=3+2(舍去),∴點P2的坐標為(3﹣2,4).又∵P2Q2=AB=5,∴點Q2的坐標為(3﹣2,﹣1).綜上所述:點Q的坐標為(1,3)或(3﹣2,﹣1).【點睛】本題主要考查了反比例函數的綜合運用,熟練掌握相關概念是解題關鍵.20、(1);(2)x>1;(3)P(﹣,0)或(,0)【解析】分析:(1)求得A(1,3),把A(1,3)代入雙曲線y=,可得y與x之間的函數關系式;(2)依據A(1,3),可得當x>0時,不等式x+b>的解集為x>1;(3)分兩種情況進行討論,AP把△ABC的面積分成1:3兩部分,則CP=BC=,或BP=BC=,即可得到OP=3﹣=,或OP=4﹣=,進而得出點P的坐標.詳解:(1)把A(1,m)代入y1=﹣x+4,可得m=﹣1+4=3,∴A(1,3),把A(1,3)代入雙曲線y=,可得k=1×3=3,∴y與x之間的函數關系式為:y=;(2)∵A(1,3),∴當x>0時,不等式x+b>的解集為:x>1;(3)y1=﹣x+4,令y=0,則x=4,∴點B的坐標為(4,0),把A(1,3)代入y2=x+b,可得3=+b,∴b=,∴y2=x+,令y2=0,則x=﹣3,即C(﹣3,0),∴BC=7,∵AP把△ABC的面積分成1:3兩部分,∴CP=BC=,或BP=BC=∴OP=3﹣=,或OP=4﹣=,∴P(﹣,0)或(,0).點睛:本題考查了反比例函數與一次函數的交點問題:求反比例函數與一次函數的交點坐標,把兩個函數關系式聯立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.21、(1)見解析;(2)見解析;(3),【分析】(1)根據圓的切線的定義來證明,證∠OCD=90°即可;(2)根據全等三角形的性質和四邊形的內接圓的外角性質來證;(3)根據已知條件先證△CDB∽△ADC,由相似三角形的對應邊成比例,求CB的值,然后求求的值;連結BE,在Rt△FEB和Rt△AEB中,利用勾股定理來求EF即可.【詳解】解:(1)如圖1,連結,是的直徑,,又點是的中點,.,又是的切線圖1(2)四邊形內接于,.,即是等腰三角形(3)如圖2,連結,設,,在中,,由(1)可知,又,在中,,,是的直徑,,即解得圖2【點睛】本題考查了圓的切線、相似三角形的性質、勾股定理的應用,解本題關鍵是找對應的線段長.22、(1);(2)①見解析;②見解析【分析】(1)根據勾股定理,計算BC即可;(2)①根據圖形,令∠B′A′C′=∠BAC,且使得△A′B′C′與△ABC相似比為作出圖(1)即可;令∠B″A″C″=∠BAC,△A″B″C″與△ABC相似比為2作出圖(2)即可;②根據格點圖形的特征,以及中點的定義,連接格點如圖所示,則交點M即為所求.【詳解】解:(1)BC==;故答案為:;(2)①如圖1,2所示:∠B′A′C′=∠BAC,△A′B′C′與△ABC相似比為,∠B″A″C″=∠BAC,△A″B″C″與△ABC相似比為2即為所求作圖形;②如圖3所示:利用格點圖形的特征,中點的定義,作出點M即為所求.【點睛】本題考查了相似三角形的應用,格點圖中作相似三角形,中點的定義,格點圖形的特征,掌握格點圖形的特征是解題的關鍵.23、(1)B;(2)2,3,2,1;(3)S(x,y,z)=2(yzS1+xzS2+xyS3);(4)2,2,3,2【分析】(1)根據幾何體碼放的情況,即可得到答案;(2)根據幾何體的三視圖,可知:幾何體有2排,3列,2層,進而即可得到答案;(3)根據有序數組的幾何體,表面上面積為S1的個數為2yz個,表面上面積為S2的個數為2xz個,表面上面積為S3的個數為2xy個,即可得到答案;(4)由題意得:xyz=1,=4yz+6xz+8xy,要使的值最小,x,y,z應滿足x≤y≤z(x,y,z為正整數),進而進行分類討論,即可求解.【詳解】(1)∵有序數組所對應的碼放的幾何體是:3排列4層,∴B選項符合題意,故選B.(2)根據幾何體的三視圖,可知:幾何體有2排,3列,2層,∴這種碼放方式的有序數組為(2,3,2),∵幾何體有2層,每層有6個單位長方體,∴組成這個幾何體的單位長方體的個數為1個.故答案是:2,3,2;1.(3)∵有序數組的幾何體,表面上面積為S1的個數為2yz個,表面上面積為S2的個數為2xz個,表面上面積為S3的個數為2xy個,∴=2(yzS1+xzS2+xyS3).(4)由題意得:xyz=1,=4yz+6xz+8xy,∴要使的值最小,x,y,z應滿足x≤y≤z(x,y,z為正整數).∴在由1個單位長方體碼放的幾何體中,滿足條件的有序數組為(1,1,1),(1,2,6),(1,3,4),(2,2,3),∵,,,,∴由1個單位長方體碼放的幾何體中,表面積最小的有序數組為:(2,2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 遼寧工程職業學院《進階英語(1)》2023-2024學年第一學期期末試卷
- 江西冶金職業技術學院《開發綜合實踐》2023-2024學年第二學期期末試卷
- 內蒙古機電職業技術學院《基礎數學實踐》2023-2024學年第一學期期末試卷
- 鄭州信息工程職業學院《腫瘤生物標志物與精準醫學》2023-2024學年第一學期期末試卷
- 河北政法職業學院《口腔頜面外科學》2023-2024學年第一學期期末試卷
- 廠房建造木工施工合同
- 技術開發服務合同條款約定
- 合同能源管理框架協議
- 對外貿易買賣合同書
- 房屋抵工程款合同
- 鉆井隊關鍵崗位人員培訓考試試題及答案
- 質量檢驗報告
- 2023年全國電力生產人身傷亡事故統計
- 機械加工企業風險分級管控制度
- GB/T 21205-2022旋轉電機修理、檢修和修復
- GB/T 30314-2021橡膠或塑料涂覆織物耐磨性的測定泰伯法
- 大學研究生招生體檢表
- 江蘇《設計原理》 自考試卷及答案
- 售電和綜合能源服務最佳案例實踐分享解讀課件
- 8086匯編語言程序設計課件
- 審計取證單模板
評論
0/150
提交評論