




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年九上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.如圖,在△ABC中,D,E,F分別為BC,AB,AC上的點,且EF∥BC,FD∥AB,則下列各式正確的是()A. B. C. D.2.已知甲、乙兩地相距20千米,汽車從甲地勻速行駛到乙地,則汽車行駛時間t(單位:小時)關于行駛速度v(單位:千米/小時)的函數關系式是()A.t=20v B.t= C.t= D.t=3.下列說法正確的是()A.“概率為1.1111的事件”是不可能事件B.任意擲一枚質地均勻的硬幣11次,正面向上的一定是5次C.“任意畫出一個等邊三角形,它是軸對稱圖形”是隨機事件D.“任意畫出一個平行四邊行,它是中心對稱圖形”是必然事件4.如圖,一次函數和反比例函數的圖象相交于,兩點,則使成立的取值范圍是()A.或 B.或C.或 D.或5.﹣的絕對值為()A.﹣2 B.﹣ C. D.16.如圖,,,,,互相外離,它們的半徑都是,順次連接五個圓心得到五邊形,則圖中五個扇形(陰影部分)的總面積是()
A. B. C. D.7.如圖,在同一平面直角坐標系中,一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,則不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2 C.﹣3<x<0或x>2 D.0<x<28.某??萍紝嵺`社團制作實踐設備,小明的操作過程如下:①小明取出老師提供的圓形細鐵環,先通過在圓一章中學到的知識找到圓心O,再任意找出圓O的一條直徑標記為AB(如圖1),測量出AB=4分米;②將圓環進行翻折使點B落在圓心O的位置,翻折部分的圓環和未翻折的圓環產生交點分別標記為C、D(如圖2);③用一細橡膠棒連接C、D兩點(如圖3);④計算出橡膠棒CD的長度.小明計算橡膠棒CD的長度為()A.2分米 B.2分米 C.3分米 D.3分米9.如圖,點B、D、C是⊙O上的點,∠BDC=130°,則∠BOC是()A.100° B.110° C.120° D.130°10.已知:在△ABC中,∠A=78°,AB=4,AC=6,下列陰影部分的三角形與原△ABC不相似的是()A. B.C. D.11.要使有意義,則x的取值范圍為()A.x≤0 B.x≥-1 C.x≥0 D.x≤-112.如圖,拋物線交x軸的負半軸于點A,點B是y軸的正半軸上一點,點A關于點B的對稱點A?恰好落在拋物線上.過點A?作x軸的平行線交拋物線于另一點C,則點A?的縱坐標為()A.1.5 B.2 C.2.5 D.3二、填空題(每題4分,共24分)13.如圖,把△ABC繞點C順時針旋轉得到△A'B'C',此時A′B′⊥AC于D,已知∠A=50°,則∠B′CB的度數是_____°.14.如圖,是的外接圓,是的中點,連結,其中與交于點.寫出圖中所有與相似的三角形:________.15.將含有30°角的直角三角板OAB如圖放置在平面直角坐標系中,OB在x軸上,若OA=2,將三角板繞原點O順時針旋轉75°,則點A的對應點A′的坐標為___________.16.拋物線y=(m2-2)x2-4mx+n的對稱軸是x=2,且它的最高點在直線y=x+2上,則m=________,n=________.17.如圖,在△ABC中DE∥BC,點D在AB邊上,點E在AC邊上,且AD:DB=2:3,四邊形DBCE的面積是10.5,則△ADE的面積是____.18.一元二次方程的根是_____.三、解答題(共78分)19.(8分)如圖,在矩形ABCD中,E是BC上一點,連接AE,將矩形沿AE翻折,使點B落在CD邊F處,連接AF,在AF上取一點O,以點O為圓心,OF為半徑作⊙O與AD相切于點P.AB=6,BC=(1)求證:F是DC的中點.(2)求證:AE=4CE.(3)求圖中陰影部分的面積.20.(8分)已知在平面直角坐標系中,一次函數y=x+b的圖象與反比例函數y=的圖象交于點A(1,m)和點B(-2,-1).(1)求k,b的值;(2)連結OA,OB,求△AOB的面積.21.(8分)如圖1,AB為⊙O的直徑,點C為⊙O上一點,CD平分∠ACB交⊙O于點D,交AB于點E.(1)求證:△ABD為等腰直角三角形;(2)如圖2,ED繞點D順時針旋轉90°,得到DE′,連接BE′,證明:BE′為⊙O的切線;(3)如圖3,點F為弧BD的中點,連接AF,交BD于點G,若DF=1,求AG的長.22.(10分)如圖,拋物線過點,,直線交拋物線于點,點的橫坐標為,點是線段上的動點.(1)求直線及拋物線的解析式;(2)過點的直線垂直于軸,交拋物線于點,求線段的長度與的關系式,為何值時,最長?(3)是否存在點使為等腰三角形,若存在請直接寫出點的坐標,若不存在,請說明理由.23.(10分)為滿足市場需求,某超市在五月初五“端午節”來臨前夕,購進一種品牌粽子,每盒進價是40元.超市規定每盒售價不得少于45元.根據以往銷售經驗發現;當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒.(1)試求出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)當每盒售價定為多少元時,每天銷售的利潤P(元)最大?最大利潤是多少?(3)為穩定物價,有關管理部門限定:這種粽子的每盒售價不得高于58元.如果超市想要每天獲得不低于6000元的利潤,那么超市每天至少銷售粽子多少盒?24.(10分)已知,如圖,拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側.點B的坐標為(1,0),OC=3OB,(1)求拋物線的解析式;(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值.25.(12分)已知三個頂點的坐標分別.(1)畫出;(2)以B為位似中心,將放大到原來的2倍,在右圖的網格圖中畫出放大后的圖形△;(3)寫出點A的對應點的坐標:___.26.如圖,一次函數y=kx+b的圖象與反比例函數y=的圖象交于A(﹣2,1),B(1,n)兩點.(1)求反比例函數和一次函數的解析式;(2)根據圖象寫出使一次函數的值>反比例函數的值的x的取值范圍.
參考答案一、選擇題(每題4分,共48分)1、D【分析】根據EF∥BC,FD∥AB,可證得四邊形EBDF是平行四邊形,利用平行線分線段成比例逐一驗證選項即可.【詳解】解:∵EF∥BC,FD∥AB,∴四邊形EBDF是平行四邊形,∴BE=DF,EF=BD,∵EF∥BC,∴,,∴,故B錯誤,D正確;∵DF∥AB,∴,,∴,故A錯誤;∵,,故C錯誤;故選:D.【點睛】本題考查了平行四邊形的的判定,平行線分線段成比例的定理,掌握平行線分線段成比例定理是解題的關鍵.2、B【解析】試題分析:根據行程問題的公式路程=速度×時間,可知汽車行駛的時間t關于行駛速度v的函數關系式為t=.考點:函數關系式3、D【分析】根據不可能事件、隨機事件、以及必然事件的定義(即根據事件發生的可能性大?。┲痦椗袛嗉纯桑驹斀狻吭谝欢l件下,不可能發生的事件叫不可能事件;一定會發生的事件叫必然事件;可能發生也可能不發生的事件叫隨機事件A、“概率為的事件”是隨機事件,此項錯誤B、任意擲一枚質地均勻的硬幣11次,正面向上的不一定是5次,此項錯誤C、“任意畫出一個等邊三角形,它是軸對稱圖形”是必然事件,此項錯誤D、“任意畫出一個平行四邊行,它是中心對稱圖形”是必然事件,此項正確故選:D.【點睛】本題考查了不可能事件、隨機事件、以及必然事件的定義,掌握理解相關定義是解題關鍵.4、B【分析】根據圖象找出一次函數圖象在反比例函數圖象上方時對應的自變量的取值范圍即可.【詳解】觀察函數圖象可發現:或時,一次函數圖象在反比例函數圖象上方,∴使成立的取值范圍是或,故選B.【點睛】本題考查了反比例函數與一次函數綜合,函數與不等式,利用數形結合思想是解題的關鍵.5、C【解析】分析:根據絕對值的定義求解,第一步列出絕對值的表達式,第二步根據絕對值定義去掉這個絕對值的符號.詳解:﹣的絕對值為|-|=-(﹣)=.點睛:主要考查了絕對值的定義,絕對值規律總結:一個正數的絕對值是它本身;一個負數的絕對值是它的相反數;1的絕對值是1.6、C【分析】根據圓心角之和等于五邊形的內角和,由于半徑相等,根據扇形的面積公式計算先算出五邊形內部五個扇形的面積之和,再用五個圓的面積之和減去五邊形內部五個扇形的面積之和即可求得結果.【詳解】∵五邊形的內角和是:(5?2)×180°=540°,∴陰影部分的面積之和是:,故選C.【點睛】本題主要考查多邊形的內角和以及扇形的面積公式,解決問題的關鍵是把陰影部分的面積當成一個扇形面積來求,將五邊形的內角和理解成圓心角也很關鍵;這題是易錯題,注意是求五邊形外部的扇形面積之和.7、C【解析】一次函數y1=kx+b落在與反比例函數y2=圖象上方的部分對應的自變量的取值范圍即為所求.【詳解】∵一次函數y1=kx+b(k、b是常數,且k≠0)與反比例函數y2=(c是常數,且c≠0)的圖象相交于A(﹣3,﹣2),B(2,3)兩點,∴不等式y1>y2的解集是﹣3<x<0或x>2,故選C.【點睛】本題考查了反比例函數與一次函數的交點問題,利用數形結合是解題的關鍵.8、B【分析】連接OC,作OE⊥CD,根據垂徑定理和勾股定理求解即可.【詳解】解:連接OC,作OE⊥CD,如圖3,∵AB=4分米,∴OC=2分米,∵將圓環進行翻折使點B落在圓心O的位置,∴分米,在Rt△OCE中,CE=分米,∴分米;故選:B.【點睛】此題綜合運用了勾股定理以及垂徑定理.注意構造由半徑、半弦、弦心距組成的直角三角形進行有關的計算.9、A【分析】首先在優弧上取點E,連接BE,CE,由點B、D、C是⊙O上的點,∠BDC=130°,即可求得∠E的度數,然后由圓周角定理,即可求得答案.【詳解】解:在優弧上取點E,連接BE,CE,如圖所示:
∵∠BDC=130°,
∴∠E=180°-∠BDC=50°,
∴∠BOC=2∠E=100°.
故選A.【點睛】此題考查了圓周角定理以及圓的內接四邊形的性質.此題難度不大,注意掌握輔助線的作法,注意掌握數形結合思想的應用.10、C【分析】根據相似三角形的判定定理對各選項進行逐一判定即可.【詳解】解:A、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;B、陰影部分的三角形與原三角形有兩個角相等,故兩三角形相似,故本選項錯誤;C、兩三角形的對應邊不成比例,故兩三角形不相似,故本選項正確.D、兩三角形對應邊成比例且夾角相等,故兩三角形相似,故本選項錯誤;故選:C.【點睛】本題主要考查了相似三角形的判定,熟知相似三角形的判定定理是解答此題的關鍵.11、B【分析】根據二次根式有意義有條件進行求解即可.【詳解】要使有意義,則被開方數要為非負數,即,∴,故選B.【點睛】本題考查了二次根式有意義的條件,熟知二次根式有意義的條件是被開方數為非負數是解題的關鍵.12、B【分析】先求出點A坐標,利用對稱可得點橫坐標,代入可得縱坐標.【詳解】解:令得,即解得點B是y軸的正半軸上一點,點A關于點B的對稱點A?恰好落在拋物線上點的橫坐標為1當時,所以點A?的縱坐標為2.故選:B【點睛】本題考查了二次函數的圖像,熟練利用函數解析式求點的坐標是解題的關鍵.二、填空題(每題4分,共24分)13、1【分析】由旋轉的性質可得∠A=∠A'=50°,∠BCB'=∠ACA',由直角三角形的性質可求∠ACA'=1°=∠B′CB.【詳解】解:∵把△ABC繞點C順時針旋轉得到△A'B'C',∴∠A=∠A'=50°,∠BCB'=∠ACA'∵A'B'⊥AC∴∠A'+∠ACA'=90°∴∠ACA'=1°∴∠BCB'=1°故答案為1.【點睛】本題考查了旋轉的性質,熟練運用旋轉的性質是本題的關鍵.14、;.【分析】由同弧所對的圓周角相等可得,可利用含對頂角的8字相似模型得到,由等弧所對的圓周角相等可得,在和含公共角,出現母子型相似模型.【詳解】∵∠ADE=∠BCE,∠AED=∠CEB,∴;∵是的中點,∴,∴∠EAD=∠ABD,∠ADB公共,∴.綜上:;.故答案為:;.【點睛】本題考查的知識點是相似三角形的判定和性質,圓周角定理,同弧或等弧所對的圓周角相等的應用是解題的關鍵.15、(,)【解析】過A′作A′C⊥x軸于C,根據旋轉得出∠AOA′=75°,OA=OA′=2,求出∠A′OC=45°,推出OC=A′C,解直角三角形求出OC和A′C,即可得出答案.【詳解】如圖,過A′作A′C⊥x軸于C,∵將三角板繞原點O順時針旋轉75°,∴∠AOA′=75°,OA=OA′=2,∵∠AOB=30°,∴∠A′OC=45°,∴OC=A′C=OA′sin45°=2×=,∴A′的坐標為(,-).故答案為:(,).【點睛】本題考查的知識點是坐標與圖形變化-旋轉,解題的關鍵是熟練的掌握坐標與圖形變化-旋轉.16、-1-1【分析】由對稱軸可求得m的值,且可求得頂點坐標,再把頂點坐標代入直線解析式可求得n.【詳解】∵拋物線y=(m2?2)x2?4mx+n的對稱軸是x=2,
∴?=2,解得m=2或m=?1,
∵拋物線有最高點,
∴m2?2<0,
∴m=?1,
∴拋物線解析式為y=?x2+4x+n=?(x?2)2+4+n,
∴頂點坐標為(2,4+n),
∵最高點在直線y=x+2上,
∴4+n=1+2,解得n=?1,
故答案為?1,?1.【點睛】本題考查二次函數的性質、一次函數圖象上點的坐標特征和二次函數的最值,解題的關鍵是掌握二次函數的性質、一次函數圖象上點的坐標特征.17、1【分析】由AD:DB=1:3,可以得到相似比為1:5,所以得到面積比為4:15,設△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x,根據題意四邊形的面積為10.5,可以求出x,即可求出△ADE的面積.【詳解】∵DE∥BC∴,∵AD:DB=1:3∴相似比=1:5
∴面積比為4:15設△ADE的面積為4x,則△ABC的面積為15x,故四邊形DBCE的面積為11x∴11x=10.5,解得x=0.5∴△ADE的面積為:4×0.5=1故答案為:1.【點睛】本題主要考查了相似三角形,熟練面積比等于相似比的平方以及準確的列出方程是解決本題的關鍵.18、【分析】利用因式分解法把方程化為x-3=0或x-2=0,然后解兩個一次方程即可.【詳解】解:或,所以.故答案為.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,這種方法簡便易用,是解一元二次方程最常用的方法.三、解答題(共78分)19、(1)見解析;(2)見解析;(3)【分析】(1)易求DF長度即可判斷;(2)通過30°角所對的直角邊等于斜邊一半證得AE=2EF,EF=2CE即可得;(3)先證明△OFG為等邊三角形,△OPG為等邊三角形,即可確定扇形圓心角∠POG和∠GOF的大小均為60°,所以兩扇形面積相等,通過割補法得出最后陰影面積只與矩形OPDH和△OGF有關,根據面積公式求出兩圖形面積即可.【詳解】(1)∵AF=AB=6,AD=BC=,∴DF=3,∴CF=DF=3,∴F是CD的中點(2)∵AF=6,DF=3,∴∠DAF=30°,∴∠EAF=30?,∴AE=2EF;∴∠EFC=30?,EF=2CE,∴AE=4CE(3)如圖,連接OP,OG,作OH⊥FG,∵∠AFD=60°,OF=OG,∴△OFG為等邊三角形,同理△OPG為等邊三角形,∴∠POG=∠FOG=60°,OH=,∴S扇形OPG=S扇形OGF,∴S陰影=(S矩形OPDH-S扇形OPG-S△OGH)+(S扇形OGF-S△OFG)=S矩形OPDH-S△OFG=,即圖中陰影部分的面積.【點睛】本題考查了正方形的性質,等邊三角形的性質及解直角三角形,涉及知識點較多,綜合性較強,根據條件,結合圖形找準對應知識點是解答此題的關鍵.20、(1)k=2;b=1;(2)【解析】(1)把B(-2,-1)分別代入和即可求出k,b的值;(2)直線AB與x軸交于點C,求出點C的坐標,可得OC的長,再求出點A的坐標,然后根據求解即可.【詳解】解:(1)把B(-2,-1)代入,解得,把B(-2,-1)代入,解得.(2)如圖,直線AB與x軸交于點C,把y=0代入,得x=-1,則C點坐標為(-1,0),∴OC=1.把A(1,m)代入得,∴A點坐標為A(1,2)..【點睛】本題考查了一次函數與反比例函數圖形上點的坐標特征,一次函數與坐標軸的交點,坐標與圖形,以及三角形的面積公式,運用數形結合的思想是解答本題的關鍵.21、(1)見解析;(1)見解析;(3)1.【分析】(1)由AB是⊙O的直徑,根據直徑所對的圓周角是直角,即可得∠ADB=90°,又由CD平分∠ACB,根據圓周角定理,可得AD=BD,繼而可得△ABD是等腰直角三角形;
(1)證明△ADE≌△BDE',可得∠DAE=∠DBE',則∠OBE'=∠ABD+∠DBE'=90°,結論得證;
(3)取AG的中點H,連結DH,則DH=AH=GH,求出DH=DF=1,則答案可求出.【詳解】(1)∵AB是⊙O的直徑,∴∠ADB=∠ACB=90°,∵CD平分∠ACB,∴∠ACD=∠DCB,∴,∴AD=BD,∴△ABD是等腰直角三角形.(1)由旋轉的性質得,∠EDE'=90°,DE=DE',∵∠ADB=90°,∴∠ADE=∠BDE',∵AD=BD,∴△ADE≌△BDE'(SAS),∴∠DAE=∠DBE',∵∠EAD=∠DCB=45°,∠ABD=∠DCA=45°,∴∠OBE'=∠ABD+∠DBE'=90°,∴BE′為⊙O的切線;(3)解:∵點F為的中點,∴∠FAD=∠DAB=11.5°,取AG的中點H,連結DH,∵∠ADB=90°,∴DH=AH=GH,∴∠ADH=∠FAD=11.5°,∴∠DHF=∠ADH+∠FAD=45°,∵∠AFD=∠ACD=45°,∴∠DHF=∠AFD,∴DH=DF=1,∴AG=1DH=1.【點睛】此題考查了和圓有關的綜合性題目,考查了等腰直角三角形的判定與性質、旋轉的性質、切線的判定、全等三角形的判定與性質以及直角三角形的性質,熟練掌握切線的判定方法是解題的關鍵.22、(1),;(2)當時,線段的長度有最大值,最大值為;(3)存在,,,【分析】(1)由題意,利用待定系數法,先求出二次函數的解析式,然后再求出直線AD的解析式;(2)根據題意,先得到l與m的函數關系式,再依據函數的最值,可求m為何值時,PQ最長,PQ的最大值也能求出;(3)根據題意,由為等腰三角形,可分為三種情況進行分析:BP=BD或BP=DP或BD=DP,分別求出點P的坐標,然后求出點Q的坐標即可.【詳解】解:(1)將,代入,得,解得:,∴拋物線的解析式為.當時,,∴點的坐標為,設直線的解析式為,代入點,,得,解得,∴直線的解析式為;(2)∵在線段上,∴,∴點的坐標為,∴點的坐標為,∴,即,∴當時,線段的長度有最大值,最大值為;(3)存在;理由如下:根據題意,則∵為等腰三角形,∴可分為三種情況進行討論:①當BP=BD時,此時點P恰好是線段AD與y軸的交點,如圖:∵,,又∵點P為(0,)∴BD=,BP=,∴BP=BD,∴點Q與點C重合,在,令x=0,則y=;∴點Q為(0,);②當BP=DP,作PE⊥BD于點E,∴點E為(,),∵直線BD的斜率為:,∴直線PE的斜率為:,∴直線PE的解析式為:;聯合直線PE與直線AD,則有,解得:,∴點P的坐標為(,),∴點Q的坐標為:;③當BD=DP,則設點P為(m,m1),∵,∴,解得:或(舍去),∴點P為(,),∴點Q的坐標為:;綜合上述,有,,.【點睛】本題是二次函數綜合題,主要考查了待定系數法求函數的解析式,二次函數的性質,等腰三角形的性質等知識,應用分類討論思想和數形結合思想是解題的關鍵.23、(1)y=﹣20x+1600;(2)當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)超市每天至少銷售粽子440盒.【解析】試題分析:(1)根據“當售價定為每盒45元時,每天可以賣出700盒,每盒售價每提高1元,每天要少賣出20盒”即可得出每天的銷售量y(盒)與每盒售價x(元)之間的函數關系式;(2)根據利潤=1盒粽子所獲得的利潤×銷售量列式整理,再根據二次函數的最值問題解答;(3)先由(2)中所求得的P與x的函數關系式,根據這種粽子的每盒售價不得高于58元,且每天銷售粽子的利潤不低于6000元,求出x的取值范圍,再根據(1)中所求得的銷售量y(盒)與每盒售價x(元)之間的函數關系式即可求解.試題解析:(1)由題意得,==;(2)P===,∵x≥45,a=﹣20<0,∴當x=60時,P最大值=8000元,即當每盒售價定為60元時,每天銷售的利潤P(元)最大,最大利潤是8000元;(3)由題意,得=6000,解得,,∵拋物線P=的開口向下,∴當50≤x≤70時,每天銷售粽子的利潤不低于6000元的利潤,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y隨x的增大而減小,∴當x=58時,y最小值=﹣20×58+1600=440,即超市每天至少銷售粽子440盒.考點:二次函數的應用.24、(1);(2)四邊形ABCD面積有最大值.【分析】(1)已知B點坐標,易求得OB、OC的長,進而可將B、C的坐標代入拋物線中,求出待定系數的值,即可得出拋物線的解析式.
(2)根據A、C的坐標,易求得直線AC的解析式.由于AB、OC都是定值,則△ABC的面積不變,若四邊形ABCD面積最大,則△ADC的面積最大;可過D作x軸的垂線,交AC于M,x軸于N;易得△ADC的面積是DM與OA積的一半,可設出N點的坐標,分別代入直線AC和拋物線的解析式中,即可求出DM的長,進而可得出四邊形ABCD的面積與N點橫坐標間的函數關系式,根據所得函數的性質即可求出四邊形ABCD的最大面積.【詳解】(1)∵B(1,0),∴OB=1;∵OC=3BO,∴C(0,﹣3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 自購材料采購合同協議
- 裝修及隔斷合同協議
- 裝修半包合同補充協議
- 補充協議變更原合同
- 船只停泊費合同協議
- 解除分居協議書范本
- 航空票務代理合同協議
- 船員免責協議書模板
- 解除農機租賃合同協議
- 蝦池承包租賃合同協議
- 水利水電工程質量保證體系
- 《思想道德與法治》(23版):第五章 遵守道德規范 錘煉道德品格
- 2024年安徽省《輔警招聘考試必刷500題》考試題庫及完整答案(必背)
- 小學教育學(第5版)課件 第5章 小學教育目標
- 警衛安檢任務流程
- 展覽會議展前展中展后服務方案(技術方案)
- 中國古代文學作品選一完全版
- 生物分離工程??荚囶}含參考答案
- 高中家長會 高一下學期期中考試家長會課件
- 慢性病護理的畢業論文范文
- 線雕提升專業知識
評論
0/150
提交評論