




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年九上數(shù)學(xué)期末模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每題4分,共48分)1.如圖,AB為⊙O的弦,AB=8,OC⊥AB于點D,交⊙O于點C,且CD=1,則⊙O的半徑為()A.8.5 B.7.5 C.9.5 D.82.若反比例函數(shù)的圖象上有兩點P1(1,y1)和P2(2,y2),那么()A.y1>y2>0 B.y2>y1>0 C.y1<y2<0 D.y2<y1<03.如圖,⊙O是△ABC的外接圓,∠B=60°,OP⊥AC于點P,OP=2,則⊙O的半徑為().A.4 B.6 C.8 D.124.下列函數(shù)中,是的反比例函數(shù)()A. B. C. D.5.如圖,點E為菱形ABCD邊上的一個動點,并延A→B→C→D的路徑移動,設(shè)點E經(jīng)過的路徑長為x,△ADE的面積為y,則下列圖象能大致反映y與x的函數(shù)關(guān)系的是()A. B.C. D.6.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉(zhuǎn)30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.7.已知OA=5cm,以O(shè)為圓心,r為半徑作⊙O.若點A在⊙O內(nèi),則r的值可以是()A.3cm B.4cm C.5cm D.6cm8.若方程有兩個不相等的實數(shù)根,則實數(shù)的值可能是()A.3 B.4 C.5 D.69.下列說法中,正確的是()A.如果k=0,是非零向量,那么k=0 B.如果是單位向量,那么=1C.如果||=||,那么=或=﹣ D.已知非零向量,如果向量=﹣5,那么∥10.正方形網(wǎng)格中,∠AOB如圖放置,則cos∠AOB的值為(
)A. B. C.
D.11.如圖,在扇形紙片AOB中,OA=10,DAOB=36°,OB在直線l上.將此扇形沿l按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)過程中無滑動),當(dāng)OA落在l上時,停止旋轉(zhuǎn).則點O所經(jīng)過的路線長為()A.12π B.11π C.10π D.10π+512.如圖,把長40,寬30的矩形紙板剪掉2個小正方形和2個小矩形(陰影部分即剪掉部分),將剩余的部分折成一個有蓋的長方體盒子,設(shè)剪掉的小正方形邊長為(紙板的厚度忽略不計),若折成長方體盒子的表面積是950,則的值是()A.3 B.4 C.4.8 D.5二、填空題(每題4分,共24分)13.拋物線y=﹣2x2+3x﹣7與y軸的交點坐標(biāo)為_____.14.如圖,在中,交于點,交于點.若、、,則的長為_________.15.如圖,中,,,將斜邊繞點逆時針旋轉(zhuǎn)至,連接,則的面積為_______.16.二次函數(shù)y=x2﹣4x+3的對稱軸方程是_____.17.在平面直角坐標(biāo)系xoy中,直線(k為常數(shù))與拋物線交于A,B兩點,且A點在軸右側(cè),P點的坐標(biāo)為(0,4)連接PA,PB.(1)△PAB的面積的最小值為____;(2)當(dāng)時,=_______18.如圖,在平面直角坐標(biāo)系中,正方形OABC的兩邊OA、OC分別在x軸、y軸上,點D(4,1)在AB邊上,把△CDB繞點C旋轉(zhuǎn)90°,點D的對應(yīng)點為點D′,則OD′的長為_________.三、解答題(共78分)19.(8分)如圖,在△ABC中,AB=AC,以AC為直徑的⊙O交BC于點D,交AB于點E,過點D作DF⊥AB,垂足為F,連接DE.(1)求證:直線DF與⊙O相切;(2)求證:BF=EF;20.(8分)現(xiàn)有3個型號相同的杯子,其中A等品2個,B等品1個,從中任意取1個杯子,記下等級后放回,第二次再從中取1個杯子,(1)用恰當(dāng)?shù)姆椒信e出兩次取出杯子所有可能的結(jié)果;(2)求兩次取出至少有一次是B等品杯子的概率.21.(8分)如圖1,將三角板放在正方形上,使三角板的直角頂點與正方形的頂點重合,三角板的一邊交于點,另一邊交的延長線于點.(1)求證:;(2)如圖2,將三角板繞點旋轉(zhuǎn),當(dāng)時,連接交于點求證:;(3)如圖3,將“正方形”改為“矩形”,且將三角板的直角頂點放于對角線(不與端點重合)上,使三角板的一邊經(jīng)過點,另一邊交于點,若,求的值.22.(10分)在下列的網(wǎng)格中,橫、縱坐標(biāo)均為整數(shù)的點叫做格點,例如正方形的頂點,都是格點.要求在下列問題中僅用無刻度的直尺作圖.
(1)畫出格點,連(或延長)交邊于,使,寫出點的坐標(biāo).(2)畫出格點,連(或延長)交邊于,使,則滿足條件的格點有個.23.(10分)如圖,Rt△ABC中,∠ABC=90°,以AB為直徑作⊙O交AC于點D,連接BD.(1)求證:∠A=∠CBD.(2)若AB=10,AD=6,M為線段BC上一點,請寫出一個BM的值,使得直線DM與⊙O相切,并說明理由.24.(10分)如圖1,已知中,,,,它在平面直角坐標(biāo)系中位置如圖所示,點在軸的負半軸上(點在點的右側(cè)),頂點在第二象限,將沿所在的直線翻折,點落在點位置(1)若點坐標(biāo)為時,求點的坐標(biāo);(2)若點和點在同一個反比例函數(shù)的圖象上,求點坐標(biāo);(3)如圖2,將四邊形向左平移,平移后的四邊形記作四邊形,過點的反比例函數(shù)的圖象與的延長線交于點,則在平移過程中,是否存在這樣的,使得以點為頂點的三角形是直角三角形且點在同一條直線上?若存在,求出的值;若不存在,請說明理由25.(12分)已知拋物線y=-x2+bx+c與直線y=-4x+m相交于第一象限內(nèi)不同的兩點A(5,n),B(3,9),求此拋物線的解析式.26.解方程(1)(用配方法)(2)(3)計算:
參考答案一、選擇題(每題4分,共48分)1、A【解析】根據(jù)垂徑定理得到直角三角形,求出的長,連接,得到直角三角形,然后在直角三角形中計算出半徑的長.【詳解】解:如圖所示:連接,則長為半徑.∵于點,∴,∵在中,,∴,∴,故答案為A.【點睛】本題主要考查垂徑定理和勾股定理.根據(jù)垂徑定理“垂直于弦的直徑平分弦,并且平分弦所對的弧”得到一直角邊,利用勾股定理列出關(guān)于半徑的等量關(guān)系是解題關(guān)鍵.2、A【詳解】∵點P1(1,y1)和P2(2,y2)在反比例函數(shù)的圖象上,∴y1=1,y2=,∴y1>y2>1.故選A.3、A【解析】∵圓心角∠AOC與圓周角∠B所對的弧都為,且∠B=60°,∴∠AOC=2∠B=120°(在同圓或等圓中,同弧所對圓周角是圓心角的一半).又OA=OC,∴∠OAC=∠OCA=30°(等邊對等角和三角形內(nèi)角和定理).∵OP⊥AC,∴∠AOP=90°(垂直定義).在Rt△AOP中,OP=2,∠OAC=30°,∴OA=2OP=4(直角三角形中,30度角所對的邊是斜邊的一半).∴⊙O的半徑4.故選A.4、A【分析】根據(jù)形如(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是因變量,自變量x的取值范圍是不等于0的一切實數(shù).分別對各選項進行分析即可.【詳解】A.是反比例函數(shù),正確;B.是二次函數(shù),錯誤;C.是一次函數(shù),錯誤;D.,y是的反比例函數(shù),錯誤.故選:A.【點睛】本題考查了反比例函數(shù)的定義.反比例函數(shù)解析式的一般形式為(k≠0),也可轉(zhuǎn)化為y=kx-1(k≠0)的形式,特別注意不要忽略k≠0這個條件.5、D【解析】點E沿A→B運動,△ADE的面積逐漸變大;點E沿B→C移動,△ADE的面積不變;點E沿C→D的路徑移動,△ADE的面積逐漸減小.故選D.點睛:本題考查函數(shù)的圖象.分三段依次考慮△ADE的面積變化情況是解題的關(guān)鍵.6、C【分析】設(shè)B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據(jù)全等三角形對應(yīng)角相等∠DAE=∠B′AE,再根據(jù)旋轉(zhuǎn)角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據(jù)陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設(shè)B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉(zhuǎn)角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),正方形的性質(zhì),全等三角形判定與性質(zhì),解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關(guān)鍵,也是本題的難點.7、D【解析】試題分析:根據(jù)題意可知,若使點A在⊙O內(nèi),則點A到圓心的大小應(yīng)該小于圓的半徑,因此圓的半徑應(yīng)該大于1.故選D考點:點與圓的位置關(guān)系8、A【分析】根據(jù)一元二次方程有兩個實數(shù)根可得:△>0,列出不等式即可求出的取值范圍,從而求出實數(shù)的可能值.【詳解】解:由題可知:解出:各個選項中,只有A選項的值滿足該取值范圍,故選A.【點睛】此題考查的是求一元二次方程的參數(shù)的取值范圍,掌握一元二次方程根的情況與△的關(guān)系是解決此題的關(guān)鍵.9、D【分析】根據(jù)平面向量的性質(zhì)一一判斷即可.【詳解】解:A、如果k=0,是非零向量,那么k=0,錯誤,應(yīng)該是k=.B、如果是單位向量,那么=1,錯誤.應(yīng)該是=1.C、如果||=||,那么=或=﹣,錯誤.模相等的向量,不一定平行.D、已知非零向量,如果向量=﹣5,那么∥,正確.故選:D.【點睛】本題主要考查平面向量,平行向量等知識,解題的關(guān)鍵是熟練掌握平面向量的基本知識.10、B【詳解】解:連接AD,CD,設(shè)正方形網(wǎng)格的邊長是1,則根據(jù)勾股定理可以得到:OD=AD=,OC=AC=,∠OCD=90°.則cos∠AOB=.故選B.11、A【分析】點O所經(jīng)過的路線是三段弧,一段是以點B為圓心,10為半徑,圓心角為90°的弧,另一段是一條線段,和弧AB一樣長的線段,最后一段是以點A為圓心,10為半徑,圓心角為90°的弧,從而得出答案.【詳解】由題意得點O所經(jīng)過的路線長=90π×10故選A.【點睛】解題的關(guān)鍵是熟練掌握弧長公式:,注意在使用公式時度不帶單位.12、D【分析】觀察圖形可知陰影部分小長方形的長為,再根據(jù)去除陰影部分的面積為950,列一元二次方程求解即可.【詳解】解:由圖可得出,整理,得,解得,(不合題意,舍去).故選:D.【點睛】本題考查的知識點是一元二次方程的應(yīng)用,根據(jù)圖形找出陰影部分小長方形的長是解此題的關(guān)鍵.二、填空題(每題4分,共24分)13、(0,﹣7)【分析】根據(jù)題意得出,然后求出y的值,即可以得到與y軸的交點坐標(biāo).【詳解】令,得,故與y軸的交點坐標(biāo)是:(0,﹣7).故答案為:(0,﹣7).【點睛】本題考查了拋物線與y軸的交點坐標(biāo)問題,掌握與y軸的交點坐標(biāo)的特點()是解題的關(guān)鍵.14、6【分析】接運用平行線分線段成比例定理列出比例式,借助已知條件即可解決問題.【詳解】,∵DE∥BC,∴,即,解得:,故答案為:.【點睛】本題主要考查了平行線分線段成比例定理及其應(yīng)用問題;運用平行線分線段成比例定理正確寫出比例式是解題的關(guān)鍵.15、8【分析】過點B'作B'E⊥AC于點E,由題意可證△ABC≌△B'AE,可得AC=B'E=4,即可求△AB'C的面積.【詳解】解:如圖:過點B'作B'E⊥AC于點E∵旋轉(zhuǎn)∴AB=AB',∠BAB'=90°∴∠BAC+∠B'AC=90°,且∠B'AC+∠AB'E=90°∴∠BAC=∠AB'E,且∠AEB'=∠ACB=90°,AB=AB'∴△ABC≌△B'AE(AAS)∴AC=B'E=4∴S△AB'C=故答案為:.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì),全等三角形的判定和性質(zhì),利用旋轉(zhuǎn)的性質(zhì)解決問題是本題的關(guān)鍵.16、x=1【分析】二次函數(shù)y=ax1+bx+c的對稱軸方程為x=﹣,根據(jù)對稱軸公式求解即可.【詳解】解:∵y=x1﹣4x+3,∴對稱軸方程是:x=﹣=1.故答案為:x=1.【點睛】本題考查了根據(jù)二次函數(shù)的一般式求對稱軸的公式,需要熟練掌握.17、16【分析】(1)設(shè)A(m,km),B(n,kn),聯(lián)立解析式,利用根與系數(shù)的關(guān)系建立之間的關(guān)系,列出面積函數(shù)關(guān)系式,利用二次函數(shù)的性質(zhì)求解最小值即可;(2)先證明平分得到,把轉(zhuǎn)化為,利用兩點間的距離公式再次轉(zhuǎn)化,從而可得答案.【詳解】解:(1)如圖,設(shè)A(m,km),B(n,kn),其中m1,n1.得:即,∴∴當(dāng)k=1時,△PAB面積有最小值,最小值為故答案為.(2)設(shè)設(shè)A(m,km),B(n,kn),其中m1,n1.得:即,∴設(shè)直線PA的解析式為y=ax+b,將P(1,4),A(m,km)代入得:,解得:,∴令y=1,得∴直線PA與x軸的交點坐標(biāo)為.同理可得,直線PB的解析式為直線PB與x軸交點坐標(biāo)為.∵∴直線PA、PB與x軸的交點關(guān)于y軸對稱,即直線PA、PB關(guān)于y軸對稱.平分,到的距離相等,而∴,過作軸于,過作軸于,則∴∴∵∴∴∴故答案為:【點睛】本題是代數(shù)幾何綜合題,難度很大.考查了二次函數(shù)與一次函數(shù)的基本性質(zhì),一元二次方程的根與系數(shù)的關(guān)系.相似三角形的判定與性質(zhì),角平分線的判定與性質(zhì),解答中首先得到基本結(jié)論,即PA、PB的對稱性,正確解決本題的關(guān)鍵是打好數(shù)學(xué)基礎(chǔ),將平時所學(xué)知識融會貫通、靈活運用.18、3或【分析】由題意,可分為逆時針旋轉(zhuǎn)和順時針旋轉(zhuǎn)進行分析,分別求出點OD′的長,即可得到答案.【詳解】解:因為點D(4,1)在邊AB上,
所以AB=BC=4,BD=4-1=3;
(1)若把△CDB順時針旋轉(zhuǎn)90°,
則點D′在x軸上,OD′=BD=3,
所以D′(3,0);∴;
(2)若把△CDB逆時針旋轉(zhuǎn)90°,
則點D′到x軸的距離為8,到y(tǒng)軸的距離為3,
所以D′(3,8),∴;
故答案為:3或.【點睛】此題主要考查了坐標(biāo)與圖形變化——旋轉(zhuǎn),考查了分類討論思想的應(yīng)用,解答此題的關(guān)鍵是要注意分順時針旋轉(zhuǎn)和逆時針旋轉(zhuǎn)兩種情況.三、解答題(共78分)19、見解析【解析】分析:(1)連接OD,由已知易得∠B=∠C,∠C=∠ODC,從而可得∠B=∠ODC,由此可得AB∥OD,結(jié)合DF⊥AB即可得到OD⊥DF,從而可得DF與⊙O相切;(2)連接AD,由已知易得BD=CD,∠BAD=∠CAD,由此可得DE=DC,從而可得DE=BD,結(jié)合DF⊥AB即可得到BF=EF.詳解:(1)連結(jié)OD,∵AB=AC,∴∠B=∠C,∵OC=OD,∴∠ODC=∠C,∴∠ODC=∠B,∴OD∥AB,∵DF⊥AB,∴DF⊥OD,∴直線DF與⊙O相切;(2)連接AD.∵AC是⊙O的直徑,∴AD⊥BC,又AB=AC,∴BD=DC,∠BAD=∠CAD,∴DE=DC,∴DE=DB,又DF⊥AB,∴BF=EF.點睛:(1)連接OD,結(jié)合已知條件證得OD∥AB是解答第1小題的關(guān)鍵;(2)連接AD結(jié)合已知條件和等腰三角形的性質(zhì)證得DE=DC=BD是解答第2小題的關(guān)鍵.20、(1)見解析;(2).【分析】(1)根據(jù)已知條件畫出樹狀圖得出所有等情況數(shù)即可;(2)找出兩次取出至少有一次是B等品杯子的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)根據(jù)題意畫樹狀圖如下:由圖可知,共有9中等可能情況數(shù);(2)∵共有9中等可能情況數(shù),其中兩次取出至少有一次是B等品杯子的有5種,∴兩次取出至少有一次是B等品杯子的概率是.【點睛】本題考查的是用列表法或樹狀圖法求概率.列表法可以不重復(fù)不遺漏的列出所有可能的結(jié)果,適合于兩步完成的事件;樹狀圖法適合兩步或兩步以上完成的事件;解題時要注意此題是放回實驗還是不放回實驗.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比。21、(1)證明見解析;(2)證明見解析;(3).【分析】(1)根據(jù)旋轉(zhuǎn)全等模型利用正方形的性質(zhì),由可證明,從而可得結(jié)論;(2)根據(jù)正方形性質(zhì)可知,結(jié)合已知可得;再由(1)可知是等腰直角三角形可得,從而證明,由相似三角形性質(zhì)即可得出結(jié)論;(3)首先過點作,垂足為,交AD于M點,由有兩角對應(yīng)相等的三角形相似,證得,根據(jù)相似三角形的對應(yīng)邊成比例,再由平行可得,由此即可求得答案.【詳解】(1)證明:∵在正方形ABCD中,∴,又∵,,在和中,,∴(ASA),;(2)證明:∵四邊形ABCD是正方形,∴,又∵,∴,由(1)可知,∴,∴,由(1)可知是等腰直角三角形,∴,∴,∴,∴,由(1)可知,∴.(3)解:如圖,過點作,垂足為,交AD于M點,∵四邊形ABCD為矩形,∴,,∴四邊形ABNM是矩形,∴,,∴又∵,∴,∴,∴,,又∵,∴,又∵,∴,,∵.【點睛】本題主要考查了相似三角形性質(zhì)和判定;涉及了正方形,矩形的性質(zhì),以及全等三角形與相似三角形的判定與性質(zhì).此題綜合性較強,注意旋轉(zhuǎn)全等模型和一線三垂直模型的應(yīng)用.22、(1)或或;(2)3個【分析】(1)根據(jù)題意可得E為BC中點,找到D關(guān)于直線BC的對稱點M3,再連接AM3,即可得到3個格點;(2)根據(jù)題意,延長BC,由,得CF=3DF,故使CN3=3AD,連接AN3,即可得到格點.【詳解】(1)如圖,或或(2)如圖,N的個數(shù)為3個,故答案為:3.【點睛】此題主要考查圖形與坐標(biāo),解題的關(guān)鍵是熟知對稱性與相似三角形的應(yīng)用.23、(1)證明見解析;(2)BM=,理由見解析.【分析】(1)利用圓周角定理得到∠ADB=90°,然后就利用等角的余角相等得到結(jié)論;(2)如圖,連接OD,DM,先計算出BD=8,OA=5,再證明Rt△CBD∽Rt△BAD,利用相似比得到BC=,取BC的中點M,連接DM、OD,如圖,證明∠2=∠4得到∠ODM=90°,根據(jù)切線的判定定理可確定DM為⊙O的切線,然后計算BM的長即可.【詳解】(1)∵AB為⊙O直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.∵∠ABC=90°,∴∠CBD+∠ABD=90°,∴∠A=∠CBD;(2)BM=.理由如下:如圖,連接OD,DM,∵∠ADB=90°,AB=10,AD=6,∴BD==8,OA=5,∵∠A=∠CBD,∵Rt△CBD∽Rt△BAD,∴=,即=,解得BC=取BC的中點M,連接DM、OD,如圖,∵DM為Rt△BCD斜邊BC的中線,∴DM=BM,∵∠2=∠4,∵OB=OD,∴∠1=∠3,∴∠1+∠2=∠3+∠4=90°,即∠ODM=90°,∴OD⊥DM,∴DM為⊙O的切線,此時BM=BC=.【點睛】本題考查了切線的判定定理:經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.也考查了圓周角定理,掌握切線的判定定理及圓周角定理是關(guān)鍵.24、(1);(2);(3)存在,或【分析】(1)過點作軸于點,利用三角函數(shù)值可得出,再根據(jù)翻折的性質(zhì)可得出,,再解,得出,,最后結(jié)合點C的坐標(biāo)即可得出答案;(2)設(shè)點坐標(biāo)為(),則點的坐標(biāo)是,利用(1)得出的結(jié)果作為已知條件,可得出點D的坐標(biāo)為,再結(jié)合反比例函數(shù)求解即可;(3)首先存在這樣的k值,分和兩種情況討論分析
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 市場分析與營銷策略計劃
- 班級同學(xué)互助小組的成立與運作計劃
- 讓幼兒探索自然的實踐方案計劃
- 保安工作總結(jié)計劃能源行業(yè)保安工作的整體考量
- 規(guī)范化管理班會課
- 2025年荷澤道路貨運從業(yè)資格證模擬考試下載什么軟件
- 電商平臺會員體系個性化營銷解決方案
- 2025云端郵件服務(wù)合同協(xié)議
- 水稻種植技術(shù)操作手冊
- 電商客戶服務(wù)標(biāo)準與操作流程
- 安徽省示范高中皖北協(xié)作區(qū)2025屆高三3月聯(lián)考試卷語文試題(含答案)
- 兒童福利政策課件解讀
- 公司關(guān)聯(lián)擔(dān)保效力裁判規(guī)則完善研究
- 茶臺買賣合同5篇
- 遼寧省營口市大石橋市第二初級中學(xué)2024-2025學(xué)年九年級下學(xué)期開學(xué)考試數(shù)學(xué)試卷
- 2025年法治素養(yǎng)考試試題及答案
- 居室空間設(shè)計 課件 項目一居室空間設(shè)計概述
- 2024年北京市中考滿分作文《盤中餐》
- 沖床基礎(chǔ)板施工方案
- 《鎂鋁合金的腐蝕與防護》課件
- 福建省廈門市集美區(qū)2024-2025學(xué)年七年級上學(xué)期期末考試英語試題(無答案)
評論
0/150
提交評論