




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江西省撫州市2024年初中數學畢業考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面運算結果為的是A. B. C. D.2.以下各圖中,能確定的是()A. B. C. D.3.下列判斷正確的是()A.任意擲一枚質地均勻的硬幣10次,一定有5次正面向上B.天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨C.“籃球隊員在罰球線上投籃一次,投中”為隨機事件D.“a是實數,|a|≥0”是不可能事件4.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=60°,則∠2的度數是()A.60° B.50° C.40° D.30°5.觀察下面“品”字形中各數之間的規律,根據觀察到的規律得出a的值為()A.23 B.75 C.77 D.1396.如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCAC.∠BAC=∠DAC D.∠B=∠D=90°7.如圖,這是由5個大小相同的整體搭成的幾何體,該幾何體的左視圖是()A. B. C. D.8.如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點E,∠ACD=40°,則∠DEA=()A.40° B.110° C.70° D.140°9.若關于x的一元一次不等式組無解,則a的取值范圍是()A.a≥3 B.a>3 C.a≤3 D.a<310.下列圖案中,是軸對稱圖形的是()A. B. C. D.11.如圖,點O′在第一象限,⊙O′與x軸相切于H點,與y軸相交于A(0,2),B(0,8),則點O′的坐標是()A.(6,4) B.(4,6) C.(5,4) D.(4,5)12.在△ABC中,∠C=90°,tanA=125,△ABC的周長為60,那么△ABCA.60 B.30 C.240 D.120二、填空題:(本大題共6個小題,每小題4分,共24分.)13.因式分解:(a+1)(a﹣1)﹣2a+2=_____.14.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.15.關于的一元二次方程有兩個不相等的實數根,則實數的取值范圍是________.16.把小圓形場地的半徑增加5米得到大圓形場地,此時大圓形場地的面積是小圓形場地的4倍,設小圓形場地的半徑為x米,若要求出未知數x,則應列出方程(列出方程,不要求解方程).17.如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為4時,陰影部分的面積為_____.18.如圖,在平面直角坐標系中,拋物線可通過平移變換向__________得到拋物線,其對稱軸與兩段拋物線所圍成的陰影部分(如圖所示)的面積是__________.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)已知:如圖,在平面直角坐標系中,O為坐標原點,△OAB的頂點A、B的坐標分別是A(0,5),B(3,1),過點B畫BC⊥AB交直線y=-m(m>54)于點C,連結AC,以點A為圓心,AC為半徑畫弧交x軸負半軸于點D,連結AD(1)求證:△ABC≌△AOD.(2)設△ACD的面積為s,求s關于m的函數關系式.(3)若四邊形ABCD恰有一組對邊平行,求m的值.20.(6分)已知:如圖1在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,點P由點B出發沿BA方向向點A勻速運動,速度為2cm/s;同時點Q由點A出發沿AC方向點C勻速運動,速度為lcm/s;連接PQ,設運動的時間為t秒(0<t<5),解答下列問題:(1)當為t何值時,PQ∥BC;(2)設△AQP的面積為y(cm2),求y關于t的函數關系式,并求出y的最大值;(3)如圖2,連接PC,并把△PQC沿QC翻折,得到四邊形PQPC,是否存在某時刻t,使四邊形PQP'C為菱形?若存在,求出此時t的值;若不存在,請說明理由.21.(6分)如圖,已知一次函數的圖象與反比例函數的圖象交于點,且與軸交于點;點在反比例函數的圖象上,以點為圓心,半徑為的作圓與軸,軸分別相切于點、.(1)求反比例函數和一次函數的解析式;(2)請連結,并求出的面積;(3)直接寫出當時,的解集.22.(8分)為了解某市市民上班時常用交通工具的狀況,某課題小組隨機調查了部分市民(問卷調查表如表所示),并根據調查結果繪制了如圖所示的尚不完整的統計圖:根據以上統計圖,解答下列問題:本次接受調查的市民共有人;扇形統計圖中,扇形B的圓心角度數是;請補全條形統計圖;若該市“上班族”約有15萬人,請估計乘公交車上班的人數.23.(8分)平面直角坐標系xOy(如圖),拋物線y=﹣x2+2mx+3m2(m>0)與x軸交于點A、B(點A在點B左側),與y軸交于點C,頂點為D,對稱軸為直線l,過點C作直線l的垂線,垂足為點E,聯結DC、BC.(1)當點C(0,3)時,①求這條拋物線的表達式和頂點坐標;②求證:∠DCE=∠BCE;(2)當CB平分∠DCO時,求m的值.24.(10分)已知點A、B分別是x軸、y軸上的動點,點C、D是某個函數圖象上的點,當四邊形ABCD(A、B、C、D各點依次排列)為正方形時,稱這個正方形為此函數圖象的伴侶正方形.如圖,正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.(1)若某函數是一次函數y=x+1,求它的圖象的所有伴侶正方形的邊長;(2)若某函數是反比例函數(k>0),它的圖象的伴侶正方形為ABCD,點D(2,m)(m<2)在反比例函數圖象上,求m的值及反比例函數解析式;(3)若某函數是二次函數y=ax2+c(a≠0),它的圖象的伴侶正方形為ABCD,C、D中的一個點坐標為(3,4).寫出伴侶正方形在拋物線上的另一個頂點坐標_____,寫出符合題意的其中一條拋物線解析式_____,并判斷你寫出的拋物線的伴侶正方形的個數是奇數還是偶數?_____.(本小題只需直接寫出答案)25.(10分)先化簡,后求值:a2?a4﹣a8÷a2+(a3)2,其中a=﹣1.26.(12分)如圖,一次函數y=2x﹣4的圖象與反比例函數y=的圖象交于A、B兩點,且點A的橫坐標為1.(1)求反比例函數的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標.27.(12分)如圖是小強洗漱時的側面示意圖,洗漱臺(矩形ABCD)靠墻擺放,高AD=80cm,寬AB=48cm,小強身高166cm,下半身FG=100cm,洗漱時下半身與地面成80°(∠FGK=80°),身體前傾成125°(∠EFG=125°),腳與洗漱臺距離GC=15cm(點D,C,G,K在同一直線上).(cos80°≈0.17,sin80°≈0.98,≈1.414)(1)此時小強頭部E點與地面DK相距多少?(2)小強希望他的頭部E恰好在洗漱盆AB的中點O的正上方,他應向前或后退多少?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】
根據合并同類項法則、同底數冪的除法、同底數冪的乘法及冪的乘方逐一計算即可判斷.【詳解】.,此選項不符合題意;.,此選項符合題意;.,此選項不符合題意;.,此選項不符合題意;故選:.【點睛】本題考查了整式的運算,解題的關鍵是掌握合并同類項法則、同底數冪的除法、同底數冪的乘法及冪的乘方.2、C【解析】
逐一對選項進行分析即可得出答案.【詳解】A中,利用三角形外角的性質可知,故該選項錯誤;B中,不能確定的大小關系,故該選項錯誤;C中,因為同弧所對的圓周角相等,所以,故該選項正確;D中,兩直線不平行,所以,故該選項錯誤.故選:C.【點睛】本題主要考查平行線的性質及圓周角定理的推論,掌握圓周角定理的推論是解題的關鍵.3、C【解析】
直接利用概率的意義以及隨機事件的定義分別分析得出答案.【詳解】A、任意擲一枚質地均勻的硬幣10次,一定有5次正面向上,錯誤;B、天氣預報說“明天的降水概率為40%”,表示明天有40%的時間都在降雨,錯誤;C、“籃球隊員在罰球線上投籃一次,投中”為隨機事件,正確;D、“a是實數,|a|≥0”是必然事件,故此選項錯誤.故選C.【點睛】此題主要考查了概率的意義以及隨機事件的定義,正確把握相關定義是解題關鍵.4、D【解析】
由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數,再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=30°.
∵AB∥CD,
∴∠2=∠D=30°.
故選D.【點睛】本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據平行線的性質,找出相等、互余或互補的角.5、B【解析】
由圖可知:上邊的數與左邊的數的和正好等于右邊的數,上邊的數為連續的奇數,左邊的數為21,22,23,…26,由此可得a,b.【詳解】∵上邊的數為連續的奇數1,3,5,7,9,11,左邊的數為21,22,23,…,∴b=26=1.∵上邊的數與左邊的數的和正好等于右邊的數,∴a=11+1=2.故選B.【點睛】本題考查了數字變化規律,觀察出上邊的數與左邊的數的和正好等于右邊的數是解題的關鍵.6、B【解析】
由圖形可知AC=AC,結合全等三角形的判定方法逐項判斷即可.【詳解】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴當CB=CD時,滿足SSS,可證明△ABC≌△ACD,故A可以;當∠BCA=∠DCA時,滿足SSA,不能證明△ABC≌△ACD,故B不可以;當∠BAC=∠DAC時,滿足SAS,可證明△ABC≌△ACD,故C可以;當∠B=∠D=90°時,滿足HL,可證明△ABC≌△ACD,故D可以;故選:B.【點睛】本題考查了全等三角形的判定方法,熟練掌握判定定理是解題關鍵.7、A【解析】
觀察所給的幾何體,根據三視圖的定義即可解答.【詳解】左視圖有2列,每列小正方形數目分別為2,1.故選A.【點睛】本題考查了三視圖的知識,左視圖是從物體的左面看得到的視圖.8、B【解析】
先由平行線性質得出∠ACD與∠BAC互補,并根據已知∠ACD=40°計算出∠BAC的度數,再根據角平分線性質求出∠BAE的度數,進而得到∠DEA的度數.【詳解】∵AB∥CD,∴∠ACD+∠BAC=180°,∵∠ACD=40°,∴∠BAC=180°﹣40°=140°,∵AE平分∠CAB,∴∠BAE=∠BAC=×140°=70°,∴∠DEA=180°﹣∠BAE=110°,故選B.【點睛】本題考查了平行線的性質和角平分線的定義,解題的關鍵是熟練掌握兩直線平行,同旁內角互補.9、A【解析】
先求出各不等式的解集,再與已知解集相比較求出a的取值范圍.【詳解】由x﹣a>0得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式組的解集是空集,∴a≥1.故選:A.【點睛】考查的是解一元一次不等式組,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.10、B【解析】
根據軸對稱圖形的定義,逐一進行判斷.【詳解】A、C是中心對稱圖形,但不是軸對稱圖形;B是軸對稱圖形;D不是對稱圖形.故選B.【點睛】本題考查的是軸對稱圖形的定義.11、D【解析】
過O'作O'C⊥AB于點C,過O'作O'D⊥x軸于點D,由切線的性質可求得O'D的長,則可得O'B的長,由垂徑定理可求得CB的長,在Rt△O'BC中,由勾股定理可求得O'C的長,從而可求得O'點坐標.【詳解】如圖,過O′作O′C⊥AB于點C,過O′作O′D⊥x軸于點D,連接O′B,∵O′為圓心,∴AC=BC,∵A(0,2),B(0,8),∴AB=8?2=6,∴AC=BC=3,∴OC=8?3=5,∵⊙O′與x軸相切,∴O′D=O′B=OC=5,在Rt△O′BC中,由勾股定理可得O′C===4,∴P點坐標為(4,5),故選:D.【點睛】本題考查了切線的性質,坐標與圖形性質,解題的關鍵是掌握切線的性質和坐標計算.12、D【解析】
由tanA的值,利用銳角三角函數定義設出BC與AC,進而利用勾股定理表示出AB,由周長為60求出x的值,確定出兩直角邊,即可求出三角形面積.【詳解】如圖所示,由tanA=125設BC=12x,AC=5x,根據勾股定理得:AB=13x,由題意得:12x+5x+13x=60,解得:x=2,∴BC=24,AC=10,則△ABC面積為120,故選D.【點睛】此題考查了解直角三角形,銳角三角函數定義,以及勾股定理,熟練掌握勾股定理是解本題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(a﹣1)1.【解析】
提取公因式(a?1),進而分解因式得出答案.【詳解】解:(a+1)(a﹣1)﹣1a+1=(a+1)(a﹣1)﹣1(a﹣1)=(a﹣1)(a+1﹣1)=(a﹣1)1.故答案為:(a﹣1)1.【點睛】此題主要考查了提取公因式法分解因式,找出公因式是解題關鍵.14、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標是(b,0),設A的坐標是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數綜合題,用到的知識點有:一次函數的平移規律,一次函數與反比例函數的交點坐標,利用了轉化及方程的思想,其中利用平移的規律表示出y=x平移后的解析式是解答本題的關鍵.15、b<9【解析】
由方程有兩個不相等的實數根結合根的判別式,可得出,解之即可得出實數b的取值范圍.【詳解】解:方程有兩個不相等的實數根,
,
解得:.【點睛】本題考查的知識點是根的判別式,解題關鍵是牢記“當時,方程有兩個不相等的實數根”.16、π(x+5)1=4πx1.【解析】
根據等量關系“大圓的面積=4×小圓的面積”可以列出方程.【詳解】解:設小圓的半徑為x米,則大圓的半徑為(x+5)米,根據題意得:π(x+5)1=4πx1,故答案為π(x+5)1=4πx1.【點睛】本題考查了由實際問題抽象出一元二次方程的知識,本題等量關系比較明顯,容易列出.17、4π﹣1【解析】分析:連結OC,根據勾股定理可求OC的長,根據題意可得出陰影部分的面積=扇形BOC的面積-三角形ODC的面積,依此列式計算即可求解.詳解:連接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點C是的中點,
∴∠COD=45°,
∴OC=CD=4,
∴陰影部分的面積=扇形BOC的面積-三角形ODC的面積
==4π-1.故答案是:4π-1.點睛:考查了正方形的性質和扇形面積的計算,解題的關鍵是得到扇形半徑的長度.18、先向右平移2個單位再向下平移2個單位;4【解析】.平移后頂點坐標是(2,-2),利用割補法,把x軸上方陰影部分補到下方,可以得到矩形面積,面積是.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)證明詳見解析;(2)S=56(m+1)2+152(m>【解析】試題分析:(1)利用兩點間的距離公式計算出AB=5,則AB=OA,則可根據“HL”證明△ABC≌△AOD;(2)過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,證明Rt△ABF∽Rt△BCE,利用相似比可得BC=53(m+1),再在Rt△ACB中,由勾股定理得AC2=AB2+BC2=25+259(m+1)2,然后證明△AOB∽△ACD,利用相似的性質得S△AOBS△ACD=(ABAC)2,而S△AOB(2)作BH⊥y軸于H,如圖,分類討論:當AB∥CD時,則∠ACD=∠CAB,由△AOB∽△ACD得∠ACD=∠AOB,所以∠CAB=∠AOB,利用三角函數得到tan∠AOB=2,tan∠ACB=ABBC=3m+1,所以3m+1=2;當AD∥BC,則∠5=∠ACB,由△AOB∽△ACD得到∠4=∠5,則∠ACB=∠4,根據三角函數定義得到tan∠4=34,tan∠ACB=試題解析:(1)證明:∵A(0,5),B(2,1),∴AB=32∴AB=OA,∵AB⊥BC,∴∠ABC=90°,在Rt△ABC和Rt△AOD中,AB=AOAC=AD∴Rt△ABC≌Rt△AOD;(2)解:過點B作直線BE⊥直線y=﹣m于E,作AF⊥BE于F,如圖,∵∠1+∠2=90°,∠1+∠2=90°,∴∠2=∠2,∴Rt△ABF∽Rt△BCE,∴ABBC=AF∴BC=53在Rt△ACB中,AC2=AB2+BC2=25+259(m+1)2∵△ABC≌△AOD,∴∠BAC=∠OAD,即∠4+∠OAC=∠OAC+∠5,∴∠4=∠5,而AO=AB,AD=AC,∴△AOB∽△ACD,∴S△AOBS△ACD而S△AOB=12×5×2=15∴S=56(m+1)2+152(m>(2)作BH⊥y軸于H,如圖,當AB∥CD時,則∠ACD=∠CAB,而△AOB∽△ACD,∴∠ACD=∠AOB,∴∠CAB=∠AOB,而tan∠AOB=BHOH=2,tan∠ACB=ABBC=55∴3m+1當AD∥BC,則∠5=∠ACB,而△AOB∽△ACD,∴∠4=∠5,∴∠ACB=∠4,而tan∠4=BHAH=3∴3m+1=3解得m=2.綜上所述,m的值為2或1.考點:相似形綜合題.20、(1)當t=時,PQ∥BC;(2)﹣(t﹣)2+,當t=時,y有最大值為;(3)存在,當t=時,四邊形PQP′C為菱形【解析】
(1)只要證明△APQ∽△ABC,可得=,構建方程即可解決問題;(2)過點P作PD⊥AC于D,則有△APD∽△ABC,理由相似三角形的性質構建二次函數即可解決問題;
(3)存在.由△APO∽△ABC,可得=,即=,推出OA=(5﹣t),根據OC=CQ,構建方程即可解決問題;【詳解】(1)在Rt△ABC中,AB===10,BP=2t,AQ=t,則AP=10﹣2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得t=,∴當t=時,PQ∥BC.(2)過點P作PD⊥AC于D,則有△APD∽△ABC,∴=,即=,∴PD=6﹣t,∴y=t(6﹣t)=﹣(t﹣)2+,∴當t=時,y有最大值為.(3)存在.理由:連接PP′,交AC于點O.∵四邊形PQP′C為菱形,∴OC=CQ,∵△APO∽△ABC,∴=,即=,∴OA=(5﹣t),∴8﹣(5﹣t)=(8﹣t),解得t=,∴當t=時,四邊形PQP′C為菱形.【點睛】本題考查四邊形綜合題、相似三角形的判定和性質、平行線的性質、勾股定理等知識,解題的關鍵是學會添加常用輔助線,構造相似三角形解決問題,學會理由參數構建方程解決問題,屬于中考壓軸題.21、(1),;(2)4;(3).【解析】
(1)連接CB,CD,依據四邊形BODC是正方形,即可得到B(1,2),點C(2,2),利用待定系數法即可得到反比例函數和一次函數的解析式;
(2)依據OB=2,點A的橫坐標為-4,即可得到△AOB的面積為:2×4×=4;
(3)依據數形結合思想,可得當x<1時,k1x+b?>1的解集為:-4<x<1.【詳解】解:(1)如圖,連接,,∵⊙C與軸,軸相切于點D,,且半徑為,,,∴四邊形是正方形,,,點,把點代入反比例函數中,解得:,∴反比例函數解析式為:,∵點在反比例函數上,把代入中,可得,,把點和分別代入一次函數中,得出:,解得:,∴一次函數的表達式為:;(2)如圖,連接,,點的橫坐標為,的面積為:;(3)由,根據圖象可知:當時,的解集為:.【點睛】本題考查了反比例函數與一次函數的交點依據待定系數法求函數解析式,解題的關鍵是求出C,B點坐標.22、(1)1;(2)43.2°;(3)條形統計圖如圖所示:見解析;(4)估計乘公交車上班的人數為6萬人.【解析】
(1)根據D組人數以及百分比計算即可.(2)根據圓心角度數=360°×百分比計算即可.(3)求出A,C兩組人數畫出條形圖即可.(4)利用樣本估計總體的思想解決問題即可.【詳解】(1)本次接受調查的市民共有:50÷25%=1(人),故答案為1.(2)扇形統計圖中,扇形B的圓心角度數=360°×=43.2°;故答案為:43.2°(3)C組人數=1×40%=80(人),A組人數=1﹣24﹣80﹣50﹣16=30(人).條形統計圖如圖所示:(4)15×40%=6(萬人).答:估計乘公交車上班的人數為6萬人.【點睛】本題考查條形統計圖,扇形統計圖,樣本估計總體等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.23、(1)y=﹣x2+2x+3;D(1,4);(2)證明見解析;(3)m=;【解析】
(1)①把C點坐標代入y=﹣x2+2mx+3m2可求出m的值,從而得到拋物線解析式,然后把一般式配成頂點式得到D點坐標;②如圖1,先解方程﹣x2+2x+3=0得B(3,0),則可判斷△OCB為等腰直角三角形得到∠OBC=45°,再證明△CDE為等腰直角三角形得到∠DCE=45°,從而得到∠DCE=∠BCE;(2)拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,把一般式配成頂點式得到拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),通過解方程﹣x2+2mx+3m2=0得B(3m,0),同時確定C(0,3m2),再利用相似比表示出GF=2m2,則DG=2m2,接著證明∠DCG=∠DGC得到DC=DG,所以m2+(4m2﹣3m2)2=4m4,然后解方程可求出m.【詳解】(1)①把C(0,3)代入y=﹣x2+2mx+3m2得3m2=3,解得m1=1,m2=﹣1(舍去),∴拋物線解析式為y=﹣x2+2x+3;∵∴頂點D為(1,4);②證明:如圖1,當y=0時,﹣x2+2x+3=0,解得x1=﹣1,x2=3,則B(3,0),∵OC=OB,∴△OCB為等腰直角三角形,∴∠OBC=45°,∵CE⊥直線x=1,∴∠BCE=45°,∵DE=1,CE=1,∴△CDE為等腰直角三角形,∴∠DCE=45°,∴∠DCE=∠BCE;(2)解:拋物線的對稱軸交x軸于F點,交直線BC于G點,如圖2,∴拋物線的對稱軸為直線x=m,頂點D的坐標為(m,4m2),當y=0時,﹣x2+2mx+3m2=0,解得x1=﹣m,x2=3m,則B(3m,0),當x=0時,y=﹣x2+2mx+3m2=3m2,則C(0,3m2),∵GF∥OC,∴即解得GF=2m2,∴DG=4m2﹣2m2=2m2,∵CB平分∠DCO,∴∠DCB=∠OCB,∵∠OCB=∠DGC,∴∠DCG=∠DGC,∴DC=DG,即m2+(4m2﹣3m2)2=4m4,∴而m>0,∴【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質和等腰三角形的性質;會利用待定系數法求函數解析式;靈活應用等腰直角三角形的性質進行幾何計算;理解坐標與圖形性質,記住兩點間的距離公式.24、(1);(2);(3)(﹣1,3);(7,﹣3);(﹣4,7);(4,1),對應的拋物線分別為;;,偶數.【解析】
(1)設正方形ABCD的邊長為a,當點A在x軸負半軸、點B在y軸正半軸上時,可知3a=,求出a,
(2)作DE、CF分別垂直于x、y軸,可知ADE≌△BAO≌△CBF,列出m的等式解出m,
(3)本問的拋物線解析式不止一個,求出其中一個.【詳解】解:(1)∵正方形ABCD是一次函數y=x+1圖象的其中一個伴侶正方形.當點A在x軸正半軸、點B在y軸負半軸上時,∴AO=1,BO=1,∴正方形ABCD的邊長為,當點A在x軸負半軸、點B在y軸正半軸上時,設正方形的邊長為a,得3a=,∴,所以伴侶正方形的邊長為或;(2)作DE、CF分別垂直于x、y軸,知△ADE≌△BAO≌△CBF,此時,m<2,DE=OA=BF=mOB=CF=AE=2﹣m∴OF=BF+OB=2∴C點坐標為(2﹣m,2),∴2m=2(2﹣m)解得m=1,反比例函數的解析式為y=,(3)根據題意畫出圖形,如圖所示:過C作CF⊥x軸,垂足為F,過D作DE⊥CF,垂足為E,∴△CED≌△DGB≌△AOB≌△AFC,∵C(3,4),即CF=4,OF=3,∴EG=3,DE=4,故DG=DE﹣GE=DE﹣OF=4﹣3=1,則D坐標
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年中國成套投梭連桿行業投資前景及策略咨詢研究報告
- 2025至2030年中國忠義千秋行業發展研究報告
- 2025至2030年中國強堿陰離子交換樹脂市場分析及競爭策略研究報告
- 2025至2030年中國建筑掛鉤行業投資前景及策略咨詢報告001
- 防非安全教育課件
- 高一試卷真題語文及答案
- 高一高等數學試卷及答案
- 自信方法行業跨境出海戰略研究報告
- 農藥殘留檢測試劑盒企業制定與實施新質生產力戰略研究報告
- 債券交易AI應用企業制定與實施新質生產力戰略研究報告
- 新教材高中生物選擇性必修2課件:1 2 種群數量的變化(人教版)
- 車輛租賃服務保障計劃
- 《裝配式混凝土建筑》全套教學課件
- (二模)溫州市2025屆高三第二次適應性考試語文試卷(含答案)
- 2024-2025學年人教版數學八年級下冊第一次月考模擬練習(含答案)
- 2025屆河北省承德市、張家口市高三下學期一模考試英語試題(含答案)
- 2024山西云時代技術有限公司社會招聘59人筆試參考題庫附帶答案詳解
- Unit+4+Eat+Well+Section+A+2a~2e課件-2024-2025學年人教版(2024)英語七年級下冊+
- 2025年部編版新教材語文一年級下冊期中測試題(有答案)
- 《FAB銷售法則》課件
- 衛生院、社區衛生服務中心《死亡醫學證明書》上報制度
評論
0/150
提交評論