




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
人教B版
選擇性必修第一冊第二章
平面解析幾何2.1坐標法數學高二章節導語
幾何學在古希臘文明蓬勃發展,獲得輝煌成就,奠定了幾何的基礎理論。17世紀笛卡爾和費馬創建解析幾何,是數學史上劃時代的重大事件,是整個人類理性文明發展史上的里程碑之一。解析幾何的基本思想是用代數的方法研究幾何,最根本的做法是把空間的幾何結構有系統的代數化、數量化。利用點的坐標來刻畫幾何對象、研究幾何對象的性質以及探討幾何對象之間的關系,是解析幾何的內容。笛卡兒費馬情境引入
數學家笛卡爾某天躺在床上靜靜地思考,思考著如何確定事物的位置,這時他發現蒼蠅粘在蜘蛛網上,蜘蛛迅速爬過去把它捉住,笛卡爾此時恍然大悟……思考:若蜘蛛由位置A爬到位置B,你能算出A,B兩點間的距離嗎BA1學習目標及核心素養2溫故知新1.數軸的定義給定了原點、單位長度與正方向的直線是數軸,數軸上的點與實數是一一對應的.數軸上的基本公式2溫故知新2.數軸上兩點間的距離公式和中點坐標公式?數軸上的基本公式結論:(1)AB兩點間的距離公式
(2)AB的中點M(
)3新知探究
平面直角坐標系中的基本公式1.平面直角坐標系的定義給定一個平面,選定原點O、單位長度及x軸和y軸的正方向,可以建立平面直角坐標系xOy,此時平面內的點與有序實數對是一一對應的.xyoA(x,y).3新知探究2.平面上兩點間的距離公式和中點坐標公式?
平面直角坐標系中的基本公式結論:(1)AB兩點間的距離公式(2)AB的中點M(
)重點類比公式應用例1.已知A(1,2),B(3,4),C(5,0)是△ABC的三個頂點,求這個三角形AB邊上中線的長.變式:判斷△ABC
的形狀.合作探究已知□ABCD,求證:ABCD思考:(1)要證明的結論只與幾何中的哪個量有關?(2)是否可通過建立平面直角坐標系來解決?(3)如何建立平面直角坐標系來證明結論?ABCDxyo證明:取A為坐標原點,以AB所在的直線為x軸,建立如圖所示的平面直角坐標系,則
A(0,0),設B(a,0),C(b,c),由此可以看出,從而可知結論成立.因此由平行四邊形的性質,
可知D(b-a,c),4方法總結
坐標法在解決一些平面上的幾何問題時,經常在平面上建立坐標系,以坐標系為橋梁,將幾何問題轉化為代數問題,通過代數運算研究幾何圖形的性質,這種方法稱為坐標法.小試牛刀例2:已知四邊形ABCD是一個長方形,AB=4,AD=1.判斷線段CD上是否存在點P,使得AP⊥BP.如果存在,指出滿足條件的P有多少個;如果不存在,說明理由.ABCD思考:(1)用幾何法如何來求解?(2)如何用坐標法來求解?xoyABCDxyo解:以AB的中點為坐標原點,AB所在的直線為x軸,建立如圖所示的平面直角坐標系,則A(-2,0),B(2,0),C(2,1),D(-2,1),設P(t,1)是線段CD上一點,則
,而且因為AP⊥BP的充要條件所以(-2-t)
(2-t)+1=0,解得所以滿足條件的P點存在,而且有兩個.5提煉升華
坐標法坐標法解決幾何問題的一般步驟?第一步:建立恰當的直角坐標系(避繁就簡),設出點坐標.第二步:列式,通過代數運算與變換,對數、代數式、
方程等之間的關系進行討論,解決代數問題.第三步:化簡,證明,把代數運算結果“翻譯”成幾何關系.簡記:建系,設點,列式,化簡,證明重點,難點情景回歸思考:若蜘蛛由位置A爬到位置B,你能算出A,B兩點間的距離嗎ABxy課堂檢測6重點,難點重點1.已知點A(a,3),B(3,3a+3)之間的距離為5,求a的值.2.已知△ABC的兩個頂點A(3,7),B(-2,5),若AC,BC的中點都在坐標軸上,求點C的坐標.3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年深圳市計算機信息系統集成合同
- 初中政治 (道德與法治)人教部編版七年級下冊青春萌動教學設計及反思
- 《道德觀念競技場》課件
- 2025大豆收購合同模板
- 《奔馳轎車概述》課件
- 《在線教學課件》課件
- 2025標準新車購買合同樣本
- 2025房產的抵押借款合同范本
- 2025年社保代理合作合同
- 2025年工業廠房建設借款合同模板
- 道德與法治項目化學習案例
- GB/T 311.2-2013絕緣配合第2部分:使用導則
- GA 1517-2018金銀珠寶營業場所安全防范要求
- C語言期末考試試題南昌航空大學
- 取消訂單協議模板(5篇)
- 東風天錦5180勾臂式垃圾車的改裝設計
- 浦發銀行個人信用報告異議申請表
- 施工進度計劃網絡圖-練習題知識講解
- 防孤島測試報告
- 按摩常用英語
- midas NFX使用指南(八)
評論
0/150
提交評論