




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省濟南市重點中學2025屆九年級數學第一學期期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每題4分,共48分)1.如圖,菱形中,過頂點作交對角線于點,已知,則的大小為()A. B. C. D.2.某人沿著有一定坡度的坡面前進了10米,此時他與水平地面的垂直距離為2米,則這個坡面的坡度為()A.1:2 B.1:3 C.1: D.:13.如圖,在中,點分別在邊上,且為邊延長線上一點,連接,則圖中與相似的三角形有()個A. B. C. D.4.如圖,在△ABC中,CD平分∠ACB交AB于點D,過點D作DE∥BC交AC于點E,若∠A=54°,∠B=48°,則∠CDE的大小為()A.44° B.40° C.39° D.38°5.用一個半徑為15、圓心角為120°的扇形圍成一個圓錐,則這個圓錐的底面半徑是()A.5 B.10 C. D.6.二次函數的圖象如圖,有下列結論:①,②,③時,,④,⑤當且時,,⑥當時,.其中正確的有()A.①②③ B.②④⑥ C.②⑤⑥ D.②③⑤7.下列各點中,在反比例函數圖象上的點是A. B. C. D.8.已知是的反比例函數,下表給出了與的一些值,表中“▲”處的數為()▲A. B. C. D.9.若一個圓錐的側面積是底面積的2倍,則圓錐側面展開圖的扇形的圓心角為()A.120° B.180° C.240° D.300°10.如圖,在正方形ABCD中,AB=2,P為對角線AC上的動點,PQ⊥AC交折線于點Q,設AP=x,△APQ的面積為y,則y與x的函數圖象正確的是()A. B.C. D.11.兩個連續奇數的積為323,求這兩個數.若設較小的奇數為,則根據題意列出的方程正確的是()A. B.C. D.12.的值等于()A. B. C.1 D.二、填空題(每題4分,共24分)13.在中,,,點D在邊AB上,且,點E在邊AC上,當________時,以A、D、E為頂點的三角形與相似.14.如果△ABC∽△DEF,且△ABC的三邊長分別為4、5、6,△DEF的最短邊長為12,那么△DEF的周長等于_____.15.計算:=______.16.計算:sin45°·cos30°+3tan60°=_______________.17.已知點A(2,4)與點B(b﹣1,2a)關于原點對稱,則ab=_____.18.如圖,在直角三角形中,是斜邊上的高,,則的值為___.三、解答題(共78分)19.(8分)已知關于x的一元二次方程x2-(2m+3)x+m2+2=0。(1)若方程有實數根,求實數m的取值范圍;(2)若方程兩實數根分別為,且滿足,求實數m的值。20.(8分)在平面直角坐標系xOy中,二次函數y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).(1)求m的值及點A的坐標;(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結A′B、BE′.①當點E′落在該二次函數的圖象上時,求AA′的長;②設AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;③當A′B+BE′取得最小值時,求點E′的坐標.21.(8分)如圖,要在木里縣某林場東西方向的兩地之間修一條公路MN,已知C點周圍200米范圍內為原始森林保護區,在MN上的點A處測得C在A的北偏東45°方向上,從A向東走600米到達B處,測得C在點B的北偏西60°方向上.(1)MN是否穿過原始森林保護區,為什么?(參考數據:≈1.732)(2)若修路工程順利進行,要使修路工程比原計劃提前5天完成,需將原定的工作效率提高25%,則原計劃完成這項工程需要多少天?22.(10分)(1)3tan30°-tan45°+2sin60°(2)23.(10分)某商場銷售一批名牌襯衫,平均每天可售出10件,每件盈利40元,為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當的降價措施.經調查發現,如果每件襯衫每降價1元,商場平均每天可多售出1件,若商場平均每天要盈利600元,每件襯衫應降價多少元?24.(10分)把函數C1:y=ax2﹣2ax﹣3a(a≠0)的圖象繞點P(m,0)旋轉180°,得到新函數C2的圖象,我們稱C2是C1關于點P的相關函數.C2的圖象的對稱軸與x軸交點坐標為(t,0).(1)填空:t的值為(用含m的代數式表示)(2)若a=﹣1,當≤x≤t時,函數C1的最大值為y1,最小值為y2,且y1﹣y2=1,求C2的解析式;(3)當m=0時,C2的圖象與x軸相交于A,B兩點(點A在點B的右側).與y軸相交于點D.把線段AD原點O逆時針旋轉90°,得到它的對應線段A′D′,若線A′D′與C2的圖象有公共點,結合函數圖象,求a的取值范圍.25.(12分)已知拋物線與軸的兩個交點是點,(在的左側),與軸的交點是點.(1)求證:,兩點中必有一個點坐標是;(2)若拋物線的對稱軸是,求其解析式;(3)在(2)的條件下,拋物線上是否存在一點,使?如果存在,求出點的坐標;如果不存在,請說明理由.26.嵐山區地處黃海之濱,漁業資源豐富,海產品深受消費者喜愛.某海產品批發超市對進貨價為40元/千克的某品牌小黃魚的銷售情況進行統計,發現每天銷售量y(千克)與銷售價x(元/千克)存在一次函數關系,如圖所示.(1)求y關于x的函數關系式;(2)若不考慮其它因素,則銷售總利潤=每千克的利潤×總銷量,那么當銷售價格定為多少時,該品牌小黃魚每天的銷售利潤最大?最大利潤是多少?
參考答案一、選擇題(每題4分,共48分)1、D【分析】先說明ABD=∠ADC=∠CBD,然后再利用三角形內角和180°求出即可∠CBD度數,最后再用直角三角形的內角和定理解答即可.【詳解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵∴∠CBD=∠BDC=∠ABD=∠ADB=(180°-134°)=23°∴=90°-23°=67°故答案為D.【點睛】本題主要考查了菱形的性質,解題的關鍵是掌握菱形的對角線平分每一組對角和三角形內角和定理.2、A【解析】根據坡面距離和垂直距離,利用勾股定理求出水平距離,然后求出坡度.【詳解】水平距離==4,則坡度為:1:4=1:1.故選A.【點睛】本題考查了解直角三角形的應用,解答本題的關鍵是掌握坡度的概念:坡度是坡面的鉛直高度h和水平寬度l的比.3、D【分析】根據平行四邊形和平行線的性質,得出對應的角相等,再結合相似三角形的性質即可得出答案.【詳解】∵EF∥CD,ABCD是平行四邊形∴EF∥CD∥AB∴∠GDP=∠GAB,∠GPD=∠GBA∴△GDP∽△GAB又EF∥AB∴∠GEQ=∠GAB,∠GQE=∠GBA∴△GEQ∽△GAB又∵ABCD為平行四邊形∴AD∥BC∴∠GDP=∠BCP,∠CBP=∠G∴∠BCP=∠GAB又∠GPD=∠BPC∴∠GBA=∠BPC∴△GAB∽△BCP又∠BQF=∠GQE∴∠BQF=∠GBA∴△GAB∽△BFQ綜上共有4個三角形與△GAB相似故答案選擇D.【點睛】本題考查的是相似三角形的判定,需要熟練掌握相似三角形的判定方法,此外,還需要掌握平行四邊形和平行線的相關知識.4、C【解析】根據三角形內角和得出∠ACB,利用角平分線得出∠DCB,再利用平行線的性質解答即可.【詳解】∵∠A=54°,∠B=48°,∴∠ACB=180°﹣54°﹣48°=78°,∵CD平分∠ACB交AB于點D,∴∠DCB=×78°=39°,∵DE∥BC,∴∠CDE=∠DCB=39°,故選C.【點睛】本題考查了三角形內角和定理、角平分線的定義、平行線的性質等,解題的關鍵是熟練掌握和靈活運用根據三角形內角和定理、角平分線的定義和平行線的性質.5、A【分析】根據弧長公式計算出弧長,圓錐的底面周長等于側面展開圖的扇形弧長,因而圓錐的底面周長是10π,設圓錐的底面半徑是r,列出方程求解.【詳解】半徑為15cm,圓心角為120°的扇形的弧長是=10π,圓錐的底面周長等于側面展開圖的扇形弧長,因而圓錐的底面周長是10π.
設圓錐的底面半徑是r,
則得到2πr=10π,
解得:r=5,
這個圓錐的底面半徑為5.故選擇A.【點睛】本題考查弧長的計算,解題的關鍵是掌握弧長的計算公式.6、D【分析】①只需根據拋物線的開口、對稱軸的位置、與y軸的交點位置就可得到a、b、c的符號,從而得到abc的符號;②只需利用拋物線對稱軸方程x==1就可得到2a與b的關系;③只需結合圖象就可得到當x=1時y=a+b+c最小,從而解決問題;④根據拋物線x=圖象在x軸上方,即可得到x=所對應的函數值的符號;⑤由可得,然后利用拋物線的對稱性即可解決問題;⑥根據函數圖像,即可解決問題.【詳解】解:①由拋物線的開口向下可得a>0,
由對稱軸在y軸的右邊可得x=>0,從而有b<0,
由拋物線與y軸的交點在y軸的負半軸上可得c<0,
則abc>0,故①錯誤;
②由對稱軸方程x==1得b=-2a,即2a+b=0,故②正確;
③由圖可知,當x=1時,y=a+b+c最小,則對于任意實數m(),都滿足,即,故③正確;
④由圖像可知,x=所對應的函數值為正,
∴x=時,有a-b+c>0,故④錯誤;
⑤若,且x1≠x2,
則,
∴拋物線上的點(x1,y1)與(x2,y2)關于拋物線的對稱軸對稱,
∴1-x1=x2-1,即x1+x2=2,故⑤正確.⑥由圖可知,當時,函數值有正數,也有負數,故⑥錯誤;∴正確的有②③⑤;故選:D.【點睛】本題主要考查了拋物線的性質(開口、對稱軸、對稱性、最值性等)、拋物線上點的坐標特征等知識,運用數形結合的思想即可解決問題.7、B【分析】把各點的坐標代入解析式,若成立,就在函數圖象上.即滿足xy=2.【詳解】只有選項B:-1×(-2)=2,所以,其他選項都不符合條件.故選B【點睛】本題考核知識點:反比例函數的意義.解題關鍵點:理解反比例函數的意義.8、D【分析】設出反比例函數解析式,把代入可求得反比例函數的比例系數,當時計算求得表格中未知的值.【詳解】是的反比例函數,,,,,當時,,故選:D.【點睛】本題考查了用待定系數法求反比例函數解析式;點在反比例函數圖象上,點的橫縱坐標適合函數解析式,在同一函數圖象上的點的橫縱坐標的積相等.9、B【詳解】試題分析:設母線長為R,底面半徑為r,∴底面周長=2πr,底面面積=πr2,側面面積=πrR,∵側面積是底面積的2倍,∴2πr2=πrR,∴R=2r,設圓心角為n,有=2πr=πR,∴n=180°.故選B.考點:圓錐的計算10、B【分析】因為點P運動軌跡是折線,故分兩種情況討論:當點P在A—D之間或當點P在D—C之間,分別計算其面積,再結合二次函數圖象的基本性質解題即可.【詳解】分兩種情況討論:當點Q在A—D之間運動時,,圖象為開口向上的拋物線;當點Q在D—C之間運動時,如圖Q1,P1位置,由二次函數圖象的性質,圖象為開口向下的拋物線,故選:B.【點睛】本題考查二次函數圖象基本性質、其中涉及分類討論法、等腰直角三角形的性質等知識,是重要考點,難度較易,掌握相關知識是解題關鍵.11、B【分析】根據連續奇數的關系用x表示出另一個奇數,然后根據乘積列方程即可.【詳解】解:根據題意:另一個奇數為:x+2∴故選B.【點睛】此題考查的是一元二次方程的應用,掌握數字之間的關系是解決此題的關鍵.12、A【分析】根據特殊角的三角函數值,即可得解.【詳解】.故選:A.【點睛】此題屬于容易題,主要考查特殊角的三角函數值.失分的原因是沒有掌握特殊角的三角函數值.二、填空題(每題4分,共24分)13、【解析】當時,∵∠A=∠A,∴△AED∽△ABC,此時AE=;當時,∵∠A=∠A,∴△ADE∽△ABC,此時AE=;故答案是:.14、1【分析】根據題意求出△ABC的周長,根據相似三角形的性質列式計算即可.【詳解】解:設△DEF的周長別為x,△ABC的三邊長分別為4、5、6,∴△ABC的周長=4+5+6=15,∵△ABC∽△DEF,∴,解得,x=1,故答案為1.【點睛】本題考查的是相似三角形的性質,掌握相似三角形的周長比等于相似比是解題的關鍵.15、【分析】直接利用平面向量的加減運算法則求解即可求得,注意去括號時符號的變化.【詳解】解:==故答案為:.【點睛】此題考查了平面向量的運算.此題難度不大,注意掌握運算法則是解此題的關鍵.16、【分析】先求出各個特殊角度的三角函數值,然后計算即可【詳解】∵∴原式=故答案為【點睛】本題考查特殊角度的三角函數值,熟記特殊角度的三角函數值是解題的關鍵。17、1.【解析】由題意,得b?1=?1,1a=?4,解得b=?1,a=?1,∴ab=(?1)×(?1)=1,故答案為1.18、【分析】證明,從而求出CD的長度,再求出即可.【詳解】∵是斜邊上的高∴∵∴∴∴解得(舍去)∴在中故答案為:.【點睛】本題考查了相似三角形的判定以及三角函數,掌握相似三角形的性質以及判定是解題的關鍵.三、解答題(共78分)19、(1);(1)1【分析】(1)根據方程有實數根結合根的判別式,即可得出關于m的一元一次不等式,解之即可得出結論;(1)利用根與系數的關系可得出x1+x1=1m+3,x1?x1=m1+1,結合x11+x11=31+x1x1即可得出關于m的一元二次方程,解之即可得出m的值.【詳解】解:(1)∵方程x1-(1m+3)x+m1+1=0有實數根,∴△=[-(1m+3)]1-4(m1+1)=11m+1≥0,解得:.(1)∵方程x1-(1m+3)x+m1+1=0的兩個根分別為x1、x1,∴x1+x1=1m+3,x1?x1=m1+1,∵x11+x11=31+x1x1,∴(x1+x1)1-1x1?x1=31+x1x1,即m1+11m-18=0,解得:m1=1,m1=-14(舍去),∴實數m的值為1.【點睛】本題考查了根與系數的關系以及根的判別式,熟練掌握當一元二次方程有實數根時根的判別式△≥0是解題的關鍵.20、(2)m="2,A(-2,0);"(2)①,②點E′的坐標是(2,2),③點E′的坐標是(,2).【分析】試題分析:(2)將點代入解析式即可求出m的值,這樣寫出函數解析式,求出A點坐標;(2)①將E點的坐標代入二次函數解析式,即可求出AA′;②連接EE′,構造直角三角形,利用勾股定理即可求出A′B2+BE′2當n=2時,其最小時,即可求出E′的坐標;③過點A作AB′⊥x軸,并使AB′="BE"=2.易證△AB′A′≌△EBE′,當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,由相似就可求出E′的坐標試題解析:解:(2)由題意可知4m=4,m=2.∴二次函數的解析式為.∴點A的坐標為(-2,0).(2)①∵點E(0,2),由題意可知,.解得.∴AA′=.②如圖,連接EE′.由題設知AA′=n(0<n<2),則A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+3.∵△A′E′O′是△AEO沿x軸向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=2.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–2)2+4.當n=2時,A′B2+BE′2可以取得最小值,此時點E′的坐標是(2,2).③如圖,過點A作AB′⊥x軸,并使AB′=BE=2.易證△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.當點B,A′,B′在同一條直線上時,A′B+B′A′最小,即此時A′B+BE′取得最小值.易證△AB′A′∽△OBA′,∴,∴AA′=∴EE′=AA′=,∴點E′的坐標是(,2).考點:2.二次函數綜合題;2.平移.【詳解】21、(1)不會穿過森林保護區.理由見解析;(2)原計劃完成這項工程需要25天.【解析】試題分析:(1)要求MN是否穿過原始森林保護區,也就是求C到MN的距離.要構造直角三角形,再解直角三角形;(2)根據題意列方程求解.試題解析:(1)如圖,過C作CH⊥AB于H,設CH=x,由已知有∠EAC=45°,∠FBC=60°則∠CAH=45°,∠CBA=30°,在RT△ACH中,AH=CH=x,在RT△HBC中,tan∠HBC=∴HB===x,∵AH+HB=AB∴x+x=600解得x≈220(米)>200(米).∴MN不會穿過森林保護區.(2)設原計劃完成這項工程需要y天,則實際完成工程需要y-5根據題意得:=(1+25%)×,解得:y=25知:y=25的根.答:原計劃完成這項工程需要25天.22、(1);(2)【分析】(2)根據特殊角的三角函數值,代入求出即可.(2)根據特殊角的三角函數值,零指數冪求出每一部分的值,代入求出即可.【詳解】(1)(2)【點睛】本題考查了實數的運算法則,同時也利用了特殊角的三角函數值、0指數冪的定義及負指數冪定義解決問題.23、平均每天要盈利600元,每件襯衫應降價20元【解析】試題分析:本題考查一元二次方程解決商品銷售問題,設每件襯衫應降價x,則每件的盈利為(40-x),每天可以售出的數量為(10+x),由題意得:(40-x)(10+x)=600,解得=10,=20,由于為了擴大銷售量,增加盈利,盡快減少庫存,所以=20.試題解析:(1)設每件襯衫應降價x元,則每件盈利40-x元,每天可以售出10+x,由題意,得(40-x)(10+x)=600,即:(x-10)(x-20)=0,解,得x1=10,x2=20,為了擴大銷售量,增加盈利,盡快減少庫存,所以x的值應為20,所以,若商場平均每天要盈利600元,每件襯衫應降價20元.24、(1)2m﹣1;(2)C2:y=x2﹣4x;(3)0<a或a≥1或a≤﹣.【分析】(1)C1:y=ax2?2ax?3a=a(x?1)2?4a,頂點(1,?4a)圍繞點P(m,0)旋轉180°的對稱點為(2m?1,4a),即可求解;(2)分≤t<1、1≤t≤、t>三種情況,分別求解,(3)分a>0、a<0兩種情況,分別求解.【詳解】解:(1)C1:y=ax2﹣2ax﹣3a=a(x﹣1)2﹣4a,頂點(1,﹣4a)圍繞點P(m,0)旋轉180°的對稱點為(2m﹣1,4a),C2:y=﹣a(x﹣2m+1)2+4a,函數的對稱軸為:x=2m﹣1,t=2m﹣1,故答案為:2m﹣1;(2)a=﹣1時,C1:y=﹣(x﹣1)2+4,①當≤t<1時,x=時,有最小值y2=,x=t時,有最大值y1=﹣(t﹣1)2+4,則y1﹣y2=﹣(t﹣1)2+4﹣=1,無解;②1≤t≤時,x=1時,有最大值y1=4,x=時,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=≠1(舍去);③當t>時,x=1時,有最大值y1=4,x=t時,有最小值y2=﹣(t﹣1)2+4,y1﹣y2=(t﹣1)2=1,解得:t=0或2(舍去0),故C2:y=(x﹣2)2﹣4=x2﹣4x;(3)m=0,C2:y=﹣a(x+1)2+4a,點A、B、D、A′、D′的坐標分別為(1,0)、(﹣3,0)、(0,3a)、(0,1)、(﹣3a,0),當a>0時,a越大,則OD越大,則點D′越靠左,當C2過點A′時,y=﹣a(0+1)2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 煉油廠智能化與大數據應用考核試卷
- 電氣機械系統的智能化旅游應用考核試卷
- 糖批發企業市場競爭力評估與提升考核試卷
- 8-1數模轉換電子課件
- 朋友和我初二語文作文
- 汽車配件售后服務提升考核試卷
- 稀土金屬加工中的設備投資與經濟效益分析案例考核試卷
- 疏散通道的安全標識與規范設置考核試卷
- 碳素材料在化學合成中的催化作用考核試卷
- 手腕康復器材考核試卷
- 幼兒園其他形式的教育活動課件
- 北斗衛星導航理論與應用課件(完整版)
- 蝦苗購銷合同模板
- 信號基礎信號—聯鎖系統
- 2020最新八年級下冊《道德與法治》知識點總結(最全版)
- 數學教師實習日記16篇
- 財產保全申請登記表
- 家裝施工驗收手冊(共13頁)
- 《責任勝于能力》PPT課件.ppt
- 先后天八卦與風水羅盤131712904
- (完整版)氨法煉鋅項目建議書
評論
0/150
提交評論