江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷含解析_第1頁
江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷含解析_第2頁
江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷含解析_第3頁
江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷含解析_第4頁
江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省鹽城市郭猛實驗學校2024屆中考聯考數學試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某班要推選學生參加學校的“詩詞達人”比賽,有7名學生報名參加班級選拔賽,他們的選拔賽成績各不相同,現取其中前3名參加學校比賽.小紅要判斷自己能否參加學校比賽,在知道自己成績的情況下,還需要知道這7名學生成績的()A.眾數 B.中位數 C.平均數 D.方差2.如圖,在△ABC中,AB=AC,AD和CE是高,∠ACE=45°,點F是AC的中點,AD與FE,CE分別交于點G、H,∠BCE=∠CAD,有下列結論:①圖中存在兩個等腰直角三角形;②△AHE≌△CBE;③BC?AD=AE2;④S△ABC=4S△ADF.其中正確的個數有()A.1 B.2 C.3 D.43.下列運算正確的是()A.a2?a4=a8 B.2a2+a2=3a4 C.a6÷a2=a3 D.(ab2)3=a3b64.的絕對值是()A.﹣4 B. C.4 D.0.45.的倒數是()A.﹣ B.2 C.﹣2 D.6.下列計算正確的是()A.3a﹣2a=1 B.a2+a5=a7 C.(ab)3=ab3 D.a2?a4=a67.學習全等三角形時,數學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統計如下表:得分(分)60708090100人數(人)7121083則得分的眾數和中位數分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分8.下列計算正確的是()A.x4?x4=x16B.(a+b)2=a2+b2C.16=±4D.(a6)2÷(a4)3=19.如圖,直線m∥n,∠1=70°,∠2=30°,則∠A等于(

)A.30° B.35° C.40° D.50°10.下列計算正確的是()A.a2?a3=a6 B.(a2)3=a6 C.a6﹣a2=a4 D.a5+a5=a1011.下列運算正確的是()A.(a2)3=a5 B. C.(3ab)2=6a2b2 D.a6÷a3=a212.已知一組數據2、x、8、1、1、2的眾數是2,那么這組數據的中位數是()A.3.1;B.4;C.2;D.6.1.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.已知扇形的弧長為,圓心角為45°,則扇形半徑為_____.14.如圖,點A為函數y=(x>0)圖象上一點,連結OA,交函數y=(x>0)的圖象于點B,點C是x軸上一點,且AO=AC,則△OBC的面積為____.15.如圖,折疊矩形ABCD的一邊AD,使點D落在BC邊的點F處,已知折痕AE=5cm,且tan∠EFC=,那么矩形ABCD的周長_____________cm.16.若關于x的一元二次方程(a﹣1)x2﹣x+1=0有實數根,則a的取值范圍為________.17.如圖,?ABCD中,AC⊥CD,以C為圓心,CA為半徑作圓弧交BC于E,交CD的延長線于點F,以AC上一點O為圓心OA為半徑的圓與BC相切于點M,交AD于點N.若AC=9cm,OA=3cm,則圖中陰影部分的面積為_____cm1.18.如圖,扇形OAB的圓心角為30°,半徑為1,將它沿箭頭方向無滑動滾動到O′A′B′的位置時,則點O到點O′所經過的路徑長為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)某校七年級(1)班班主任對本班學生進行了“我最喜歡的課外活動”的調查,并將調查結果分為書法和繪畫類記為A;音樂類記為B;球類記為C;其他類記為D.根據調查結果發現該班每個學生都進行了等級且只登記了一種自己最喜歡的課外活動.班主任根據調查情況把學生都進行了歸類,并制作了如下兩幅統計圖,請你結合圖中所給信息解答下列問題:七年級(1)班學生總人數為_______人,扇形統計圖中D類所對應扇形的圓心角為_____度,請補全條形統計圖;學校將舉行書法和繪畫比賽,每班需派兩名學生參加,A類4名學生中有兩名學生擅長書法,另兩名擅長繪畫.班主任現從A類4名學生中隨機抽取兩名學生參加比賽,請你用列表或畫樹狀圖的方法求出抽到的兩名學生恰好是一名擅長書法,另一名擅長繪畫的概率.20.(6分)如圖,點O是△ABC的邊AB上一點,⊙O與邊AC相切于點E,與邊BC,AB分別相交于點D,F,且DE=EF.求證:∠C=90°;當BC=3,sinA=時,求AF的長.21.(6分)如圖,AB是⊙O的直徑,點C在AB的延長線上,CD與⊙O相切于點D,CE⊥AD,交AD的延長線于點E.(1)求證:∠BDC=∠A;(2)若CE=4,DE=2,求AD的長.22.(8分)如圖,直線y=x+2與雙曲線y=相交于點A(m,3),與x軸交于點C.求雙曲線的解析式;點P在x軸上,如果△ACP的面積為3,求點P的坐標.23.(8分)計算:(-)-2–2()+24.(10分)如圖,拋物線(a≠0)的圖象與x軸交于A、B兩點,與y軸交于C點,已知B點坐標為(4,0).(1)求拋物線的解析式;(2)試探究△ABC的外接圓的圓心位置,并求出圓心坐標;(3)若點M是線段BC下方的拋物線上一點,求△MBC的面積的最大值,并求出此時M點的坐標.25.(10分)如圖,一次函數y=2x﹣4的圖象與反比例函數y=的圖象交于A、B兩點,且點A的橫坐標為1.(1)求反比例函數的解析式;(2)點P是x軸上一動點,△ABP的面積為8,求P點坐標.26.(12分)為了解某校九年級學生立定跳遠水平,隨機抽取該年級50名學生進行測試,并把測試成績(單位:m)繪制成不完整的頻數分布表和頻數分布直方圖.學生立定跳遠測試成績的頻數分布表分組頻數1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810請根據圖表中所提供的信息,完成下列問題:表中a=,b=,樣本成績的中位數落在范圍內;請把頻數分布直方圖補充完整;該校九年級共有1000名學生,估計該年級學生立定跳遠成績在2.4≤x<2.8范圍內的學生有多少人?27.(12分)如圖,已知AB是⊙O的弦,C是的中點,AB=8,AC=,求⊙O半徑的長.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,只需知道中位數即可.【詳解】由于總共有7個人,且他們的成績互不相同,第4的成績是中位數,要判斷自己能否參加學校比賽,故應知道中位數是多少.故選B.【點睛】本題考查了統計的有關知識,掌握平均數、中位數、眾數、方差的意義是解題的關鍵.2、C【解析】

①圖中有3個等腰直角三角形,故結論錯誤;②根據ASA證明即可,結論正確;③利用面積法證明即可,結論正確;④利用三角形的中線的性質即可證明,結論正確.【詳解】∵CE⊥AB,∠ACE=45°,∴△ACE是等腰直角三角形,∵AF=CF,∴EF=AF=CF,∴△AEF,△EFC都是等腰直角三角形,∴圖中共有3個等腰直角三角形,故①錯誤,∵∠AHE+∠EAH=90°,∠DHC+∠BCE=90°,∠AHE=∠DHC,∴∠EAH=∠BCE,∵AE=EC,∠AEH=∠CEB=90°,∴△AHE≌△CBE,故②正確,∵S△ABC=BC?AD=AB?CE,AB=AC=AE,AE=CE,∴BC?AD=CE2,故③正確,∵AB=AC,AD⊥BC,∴BD=DC,∴S△ABC=2S△ADC,∵AF=FC,∴S△ADC=2S△ADF,∴S△ABC=4S△ADF.故選C.【點睛】本題考查相似三角形的判定和性質、等腰直角三角形的判定和性質、三角形的面積等知識,解題的關鍵是靈活運用所學知識解決問題,屬于中考選擇題中的壓軸題.3、D【解析】根據同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方運算法則逐一計算作出判斷:A、a2?a4=a6,故此選項錯誤;B、2a2+a2=3a2,故此選項錯誤;C、a6÷a2=a4,故此選項錯誤;D、(ab2)3=a3b6,故此選項正確..故選D.考點:同底數冪的乘法,合并同類項,同底數冪的除法,冪的乘方與積的乘方.4、B【解析】分析:根據絕對值的性質,一個負數的絕對值等于其相反數,可有相反數的意義求解.詳解:因為-的相反數為所以-的絕對值為.故選:B點睛:此題主要考查了求一個數的絕對值,關鍵是明確絕對值的性質,一個正數的絕對值等于本身,0的絕對值是0,一個負數的絕對值為其相反數.5、B【解析】

根據乘積是1的兩個數叫做互為倒數解答.【詳解】解:∵×1=1∴的倒數是1.故選B.【點睛】本題考查了倒數的定義,是基礎題,熟記概念是解題的關鍵.6、D【解析】

根據合并同類項法則、積的乘方及同底數冪的乘法的運算法則依次計算后即可解答.【詳解】∵3a﹣2a=a,∴選項A不正確;∵a2+a5≠a7,∴選項B不正確;∵(ab)3=a3b3,∴選項C不正確;∵a2?a4=a6,∴選項D正確.故選D.【點睛】本題考查了合并同類項法則、積的乘方及同底數冪的乘法的運算法則,熟練運用法則是解決問題的關鍵.7、C【解析】

解:根據表格中的數據,可知70出現的次數最多,可知其眾數為70分;把數據按從小到大排列,可知其中間的兩個的平均數為80分,故中位數為80分.故選C.【點睛】本題考查數據分析.8、D【解析】試題分析:x4x4=x8(同底數冪相乘,底數不變,指數相加);(a+b)2=a2+b2+2ab(完全平方公式);(表示16的算術平方根取正號);(a6)考點:1、冪的運算;2、完全平方公式;3、算術平方根.9、C【解析】試題分析:已知m∥n,根據平行線的性質可得∠3=∠1=70°.又因∠3是△ABD的一個外角,可得∠3=∠2+∠A.即∠A=∠3-∠2=70°-30°=40°.故答案選C.考點:平行線的性質.10、B【解析】

根據同底數冪乘法、冪的乘方的運算性質計算后利用排除法求解.【詳解】A、a2?a3=a5,錯誤;B、(a2)3=a6,正確;C、不是同類項,不能合并,錯誤;D、a5+a5=2a5,錯誤;故選B.【點睛】本題綜合考查了整式運算的多個考點,包括同底數冪的乘法、冪的乘方、合并同類項,需熟練掌握且區分清楚,才不容易出錯.11、B【解析】分析:本題考察冪的乘方,同底數冪的乘法,積的乘方和同底數冪的除法.解析:,故A選項錯誤;a3·a=a4故B選項正確;(3ab)2=9a2b2故C選項錯誤;a6÷a3=a3故D選項錯誤.故選B.12、A【解析】∵數據組2、x、8、1、1、2的眾數是2,∴x=2,∴這組數據按從小到大排列為:2、2、2、1、1、8,∴這組數據的中位數是:(2+1)÷2=3.1.故選A.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】

根據弧長公式l=代入求解即可.【詳解】解:∵,∴.故答案為1.【點睛】本題考查了弧長的計算,解答本題的關鍵是掌握弧長公式:l=.14、6【解析】

根據題意可以分別設出點A、點B的坐標,根據點O、A、B在同一條直線上可以得到A、B的坐標之間的關系,由AO=AC可知點C的橫坐標是點A的橫坐標的2倍,從而可以得到△OBC的面積.【詳解】設點A的坐標為(a,),點B的坐標為(b,),∵點C是x軸上一點,且AO=AC,∴點C的坐標是(2a,0),設過點O(0,0),A(a,)的直線的解析式為:y=kx,∴=k?a,解得k=,又∵點B(b,)在y=x上,∴=?b,解得,=或=?(舍去),∴S△OBC==6.故答案為:6.【點睛】本題考查了等腰三角形的性質與反比例函數的圖象以及三角形的面積公式,解題的關鍵是熟練的掌握等腰三角形的性質與反比例函數的圖象以及三角形的面積公式.15、36.【解析】試題分析:∵△AFE和△ADE關于AE對稱,∴∠AFE=∠D=90°,AF=AD,EF=DE.∵tan∠EFC==,∴可設EC=3x,CF=4x,那么EF=5x,∴DE=EF=5x.∴DC=DE+CE=3x+5x=8x.∴AB=DC=8x.∵∠EFC+∠AFB=90°,∠BAF+∠AFB=90°,∴∠EFC=∠BAF.∴tan∠BAF=tan∠EFC=,∴=.∴AB=8x,∴BF=6x.∴BC=BF+CF=10x.∴AD=10x.在Rt△ADE中,由勾股定理,得AD2+DE2=AE2.∴(10x)2+(5x)2=(5)2.解得x=1.∴AB=8x=8,AD=10x=10.∴矩形ABCD的周長=8×2+10×2=36.考點:折疊的性質;矩形的性質;銳角三角函數;勾股定理.16、a≤且a≠1.【解析】

根據一元二次方程有實數根的條件列出關于a的不等式組,求出a的取值范圍即可.【詳解】由題意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤,又a-1≠0,∴a≤且a≠1.故答案為a≤且a≠1.點睛:本題考查的是根的判別式及一元二次方程的定義,根據題意列出關于a的不等式組是解答此題的關鍵.17、11π﹣.【解析】

陰影部分的面積=扇形ECF的面積-△ACD的面積-△OCM的面積-扇形AOM的面積-弓形AN的面積.【詳解】解:連接OM,ON.∴OM=3,OC=6,∴∴∴扇形ECF的面積△ACD的面積扇形AOM的面積弓形AN的面積△OCM的面積∴陰影部分的面積=扇形ECF的面積?△ACD的面積?△OCM的面積?扇形AOM的面積?弓形AN的面積故答案為.【點睛】考查不規則圖形的面積的計算,掌握扇形的面積公式是解題的關鍵.18、【解析】

點O到點O′所經過的路徑長分三段,先以A為圓心,1為半徑,圓心角為90度的弧長,再平移了AB弧的長,最后以B為圓心,1為半徑,圓心角為90度的弧長.根據弧長公式計算即可.【詳解】解:∵扇形OAB的圓心角為30°,半徑為1,∴AB弧長=∴點O到點O′所經過的路徑長=故答案為:【點睛】本題考查了弧長公式:.也考查了旋轉的性質和圓的性質.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、48;105°;2【解析】試題分析:根據B的人數和百分比求出總人數,根據D的人數和總人數的得出D所占的百分比,然后得出圓心角的度數,根據總人數求出C的人數,然后補全統計圖;記A類學生擅長書法的為A1,擅長繪畫的為A2,根據題意畫出表格,根據概率的計算法則得出答案.試題解析:(1)12÷25%=48(人)14÷48×360°=105°48-(4+12+14)=18(人),補全圖形如下:(2)記A類學生擅長書法的為A1,擅長繪畫的為A2,則可列下表:

A1

A1

A2

A2

A1

A1

A2

A2

∴由上表可得:P(考點:統計圖、概率的計算.20、(1)見解析(2)【解析】

(1)連接OE,BE,因為DE=EF,所以=,從而易證∠OEB=∠DBE,所以OE∥BC,從可證明BC⊥AC;(2)設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=從而可求出r的值.【詳解】解:(1)連接OE,BE,∵DE=EF,∴=∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O與邊AC相切于點E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=,∴AB=5,設⊙O的半徑為r,則AO=5﹣r,在Rt△AOE中,sinA=∴∴【點睛】本題考查圓的綜合問題,涉及平行線的判定與性質,銳角三角函數,解方程等知識,綜合程度較高,需要學生靈活運用所學知識.21、(1)證明過程見解析;(2)1.【解析】試題分析:(1)連接OD,由CD是⊙O切線,得到∠ODC=90°,根據AB為⊙O的直徑,得到∠ADB=90°,等量代換得到∠BDC=∠ADO,根據等腰直角三角形的性質得到∠ADO=∠A,即可得到結論;(2)根據垂直的定義得到∠E=∠ADB=90°,根據平行線的性質得到∠DCE=∠BDC,根據相似三角形的性質得到,解方程即可得到結論.試題解析:(1)連接OD,∵CD是⊙O切線,∴∠ODC=90°,即∠ODB+∠BDC=90°,∵AB為⊙O的直徑,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A;(2)∵CE⊥AE,∴∠E=∠ADB=90°,∴DB∥EC,∴∠DCE=∠BDC,∵∠BDC=∠A,∴∠A=∠DCE,∵∠E=∠E,∴△AEC∽△CED,∴,∴EC2=DE?AE,∴11=2(2+AD),∴AD=1.考點:(1)切線的性質;(2)相似三角形的判定與性質.22、(1)(2)(-6,0)或(-2,0).【解析】分析:(1)把A點坐標代入直線解析式可求得m的值,則可求得A點坐標,再把A點坐標代入雙曲線解析式可求得k的值,可求得雙曲線解析式;(2)設P(t,0),則可表示出PC的長,進一步表示出△ACP的面積,可得到關于t的方程,則可求得P點坐標.詳解:(1)把A點坐標代入y=x+2,可得:3=m+2,解得:m=2,∴A(2,3).∵A點也在雙曲線上,∴k=2×3=6,∴雙曲線解析式為y=;(2)在y=x+2中,令y=0可求得:x=﹣4,∴C(﹣4,0).∵點P在x軸上,∴可設P點坐標為(t,0),∴CP=|t+4|,且A(2,3),∴S△ACP=×3|t+4|.∵△ACP的面積為3,∴×3|t+4|=3,解得:t=﹣6或t=﹣2,∴P點坐標為(﹣6,0)或(﹣2,0).點睛:本題主要考查函數圖象的交點,掌握函數圖象的交點坐標滿足每個函數解析式是解題的關鍵.23、0【解析】

本題涉及負指數冪、二次根式化簡和絕對值3個考點.在計算時,需要針對每個考點分別進行計算,然后根據實數的運算法則求得計算結果.【詳解】原式.【點睛】本題主要考查負指數冪、二次根式化簡和絕對值,熟悉掌握是關鍵.24、(1);(2)(,0);(3)1,M(2,﹣3).【解析】試題分析:方法一:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)首先根據拋物線的解析式確定A點坐標,然后通過證明△ABC是直角三角形來推導出直徑AB和圓心的位置,由此確定圓心坐標.(3)△MBC的面積可由S△MBC=BC×h表示,若要它的面積最大,需要使h取最大值,即點M到直線BC的距離最大,若設一條平行于BC的直線,那么當該直線與拋物線有且只有一個交點時,該交點就是點M.方法二:(1)該函數解析式只有一個待定系數,只需將B點坐標代入解析式中即可.(2)通過求出A,B,C三點坐標,利用勾股定理或利用斜率垂直公式可求出AC⊥BC,從而求出圓心坐標.(3)利用三角形面積公式,過M點作x軸垂線,水平底與鉛垂高乘積的一半,得出△MBC的面積函數,從而求出M點.試題解析:解:方法一:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)由(1)的函數解析式可求得:A(﹣1,0)、C(0,﹣2);∴OA=1,OC=2,OB=1,即:OC2=OA?OB,又:OC⊥AB,∴△OAC∽△OCB,得:∠OCA=∠OBC;∴∠ACB=∠OCA+∠OCB=∠OBC+∠OCB=90°,∴△ABC為直角三角形,AB為△ABC外接圓的直徑;所以該外接圓的圓心為AB的中點,且坐標為:(,0).(3)已求得:B(1,0)、C(0,﹣2),可得直線BC的解析式為:y=x﹣2;設直線l∥BC,則該直線的解析式可表示為:y=x+b,當直線l與拋物線只有一個交點時,可列方程:x+b=,即:,且△=0;∴1﹣1×(﹣2﹣b)=0,即b=﹣1;∴直線l:y=x﹣1.所以點M即直線l和拋物線的唯一交點,有:,解得:即M(2,﹣3).過M點作MN⊥x軸于N,S△BMC=S梯形OCMN+S△MNB﹣S△OCB=×2×(2+3)+×2×3﹣×2×1=1.方法二:(1)將B(1,0)代入拋物線的解析式中,得:0=16a﹣×1﹣2,即:a=,∴拋物線的解析式為:.(2)∵y=(x﹣1)(x+1),∴A(﹣1,0),B(1,0).C(0,﹣2),∴KAC==﹣2,KBC==,∴KAC×KBC=﹣1,∴AC⊥BC,∴△ABC是以AB為斜邊的直角三角形,△ABC的外接圓的圓心是AB的中點,△ABC的外接圓的圓心坐標為(,0).(3)過點M作x軸的垂線交BC′于H,∵B(1,0),C(0,﹣2),∴lBC:y=x﹣2,設H(t,t﹣2),M(t,),∴S△MBC=×(HY﹣MY)(BX﹣CX)=×(t﹣2﹣)(1﹣0)=﹣t2+1t,∴當t=2時,S有最大值1,∴M(2,﹣3).點睛:考查了二次函數綜合題,該題的難度不算太大,但用到的瑣碎知識點較多,綜合性很強.熟練掌握直角三角形的相關性質以及三角形的面積公式是理出思路的關鍵.25、(1)y=;(2)(4,0)或(0,0)【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論