湖北省隨州市尚市中學2024年中考聯考數學試卷含解析_第1頁
湖北省隨州市尚市中學2024年中考聯考數學試卷含解析_第2頁
湖北省隨州市尚市中學2024年中考聯考數學試卷含解析_第3頁
湖北省隨州市尚市中學2024年中考聯考數學試卷含解析_第4頁
湖北省隨州市尚市中學2024年中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖北省隨州市尚市中學2024年中考聯考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,將矩形ABCD沿EM折疊,使頂點B恰好落在CD邊的中點N上.若AB=6,AD=9,則五邊形ABMND的周長為()A.28 B.26 C.25 D.222.某校120名學生某一周用于閱讀課外書籍的時間的頻率分布直方圖如圖所示.其中閱讀時間是8~10小時的頻數和頻率分別是()A.15,0.125 B.15,0.25 C.30,0.125 D.30,0.253.要使式子有意義,x的取值范圍是()A.x≠1 B.x≠0 C.x>﹣1且≠0 D.x≥﹣1且x≠04.下列運算正確的是()A.3a2﹣2a2=1 B.a2?a3=a6 C.(a﹣b)2=a2﹣b2 D.(a+b)2=a2+2ab+b25.如圖,∠ACB=90°,D為AB的中點,連接DC并延長到E,使CE=CD,過點B作BF∥DE,與AE的延長線交于點F,若AB=6,則BF的長為()A.6 B.7 C.8 D.106.已知正多邊形的一個外角為36°,則該正多邊形的邊數為().A.12 B.10 C.8 D.67.等腰三角形一邊長等于5,一邊長等于10,它的周長是()A.20 B.25 C.20或25 D.158.使用家用燃氣灶燒開同一壺水所需的燃氣量(單位:)與旋鈕的旋轉角度(單位:度)()近似滿足函數關系y=ax2+bx+c(a≠0).如圖記錄了某種家用燃氣灶燒開同一壺水的旋鈕角度與燃氣量的三組數據,根據上述函數模型和數據,可推斷出此燃氣灶燒開一壺水最節省燃氣的旋鈕角度約為()A. B. C. D.9.如圖,⊙O的直徑AB的長為10,弦AC長為6,∠ACB的平分線交⊙O于D,則CD長為()A.7 B. C. D.910.全球芯片制造已經進入10納米到7納米器件的量產時代.中國自主研發的第一臺7納米刻蝕機,是芯片制造和微觀加工最核心的設備之一,7納米就是0.000000007米.數據0.000000007用科學記數法表示為()A.0.7×10﹣8 B.7×10﹣8 C.7×10﹣9 D.7×10﹣10二、填空題(共7小題,每小題3分,滿分21分)11.如圖,已知正方形ABCD中,∠MAN=45°,連接BD與AM,AN分別交于E,F點,則下列結論正確的有_____.①MN=BM+DN②△CMN的周長等于正方形ABCD的邊長的兩倍;③EF1=BE1+DF1;④點A到MN的距離等于正方形的邊長⑤△AEN、△AFM都為等腰直角三角形.⑥S△AMN=1S△AEF⑦S正方形ABCD:S△AMN=1AB:MN⑧設AB=a,MN=b,則≥1﹣1.12.已知正比例函數的圖像經過點M(-2,1)、Ax1,y1、Bx2,y13.一個多邊形的每個內角都等于150°,則這個多邊形是_____邊形.14.如圖,是一個正方體包裝盒的表面展開圖,若在其中的三個正方形A、B、C內分別填上適當的數,使得將這個表面展開圖折成正方體后,相對面上的兩個數互為相反數,則填在B內的數為______.15.已知一個正多邊形的內角和是外角和的3倍,那么這個正多邊形的每個內角是_____度.16.某商場將一款品牌時裝按標價打九折出售,可獲利80%,這款商品的標價為1000元,則進價為________元。17.如圖,在邊長相同的小正方形網格中,點A、B、C、D都在這些小正方形的頂點上,AB與CD相交于點P,則tan∠APD的值為______.三、解答題(共7小題,滿分69分)18.(10分)為了弘揚我國古代數學發展的偉大成就,某校九年級進行了一次數學知識競賽,并設立了以我國古代數學家名字命名的四個獎項:“祖沖之獎”、“劉徽獎”、“趙爽獎”和“楊輝獎”,根據獲獎情況繪制成如圖1和圖2所示的條形統計圖和扇形統計圖,并得到了獲“祖沖之獎”的學生成績統計表:“祖沖之獎”的學生成績統計表:分數/分80859095人數/人42104根據圖表中的信息,解答下列問題:(1)這次獲得“劉徽獎”的人數是_____,并將條形統計圖補充完整;(2)獲得“祖沖之獎”的學生成績的中位數是_____分,眾數是_____分;(3)在這次數學知識竟賽中有這樣一道題:一個不透明的盒子里有完全相同的三個小球,球上分別標有數字“﹣2”,“﹣1”和“2”,隨機摸出一個小球,把小球上的數字記為x放回后再隨機摸出一個小球,把小球上的數字記為y,把x作為橫坐標,把y作為縱坐標,記作點(x,y).用列表法或樹狀圖法求這個點在第二象限的概率.19.(5分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數式表示PM的長;在(2)的條件下,連結PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.20.(8分)灞橋區教育局為了了解七年級學生參加社會實踐活動情況,隨機抽取了鐵一中濱河學部分七年級學生2016﹣2017學年第一學期參加實踐活動的天數,并用得到的數據繪制了兩幅統計圖,下面給出了兩幅不完整的統計圖.請根據圖中提供的信息,回答下列問題:(1)a=%,并補全條形圖.(2)在本次抽樣調查中,眾數和中位數分別是多少?(3)如果該區共有七年級學生約9000人,請你估計活動時間不少于6天的學生人數大約有多少?21.(10分)A、B、C三人玩籃球傳球游戲,游戲規則是:第一次傳球由A將球隨機地傳給B、C兩人中的某一人,以后的每一次傳球都是由上次的傳球者隨機地傳給其他兩人中的某一人.(1)求兩次傳球后,球恰在B手中的概率;(2)求三次傳球后,球恰在A手中的概率.22.(10分)某藥廠銷售部門根據市場調研結果,對該廠生產的一種新型原料藥未來兩年的銷售進行預測,并建立如下模型:設第t個月該原料藥的月銷售量為P(單位:噸),P與t之間存在如圖所示的函數關系,其圖象是函數P=(0<t≤8)的圖象與線段AB的組合;設第t個月銷售該原料藥每噸的毛利潤為Q(單位:萬元),Q與t之間滿足如下關系:Q=(1)當8<t≤24時,求P關于t的函數解析式;(2)設第t個月銷售該原料藥的月毛利潤為w(單位:萬元)①求w關于t的函數解析式;②該藥廠銷售部門分析認為,336≤w≤513是最有利于該原料藥可持續生產和銷售的月毛利潤范圍,求此范圍所對應的月銷售量P的最小值和最大值.23.(12分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數式表示)()如圖②,四邊形是某市規劃用地的示意圖,經測量得到如下數據:,,,,請你利用所學知識探索它的最大面積(結果保留根號)24.(14分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】

如圖,運用矩形的性質首先證明CN=3,∠C=90°;運用翻折變換的性質證明BM=MN(設為λ),運用勾股定理列出關于λ的方程,求出λ,即可解決問題.【詳解】如圖,由題意得:BM=MN(設為λ),CN=DN=3;∵四邊形ABCD為矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五邊形ABMND的周長=6+5+5+3+9=28,故選A.【點睛】該題主要考查了翻折變換的性質、矩形的性質、勾股定理等幾何知識點及其應用問題;解題的關鍵是靈活運用翻折變換的性質、矩形的性質、勾股定理等幾何知識點來分析、判斷、推理或解答.2、D【解析】分析:根據頻率分布直方圖中的數據信息和被調查學生總數為120進行計算即可作出判斷.詳解:由頻率分布直方圖可知:一周內用于閱讀的時間在8-10小時這組的:頻率:組距=0.125,而組距為2,∴一周內用于閱讀的時間在8-10小時這組的頻率=0.125×2=0.25,又∵被調查學生總數為120人,∴一周內用于閱讀的時間在8-10小時這組的頻數=120×0.25=30.綜上所述,選項D中數據正確.故選D.點睛:本題解題的關鍵有兩點:(1)要看清,縱軸上的數據是“頻率:組距”的值,而不是頻率;(2)要弄清各自的頻數、頻率和總數之間的關系.3、D【解析】

根據二次根式由意義的條件是:被開方數大于或等于1,和分母不等于1,即可求解.【詳解】根據題意得:,解得:x≥-1且x≠1.故選:D.【點睛】本題考查的知識點為:分式有意義,分母不為1;二次根式的被開方數是非負數.4、D【解析】

根據合并同類項法則,可知3a2﹣2a2=a2,故不正確;根據同底數冪相乘,可知a2?a3=a5,故不正確;根據完全平方公式,可知(a﹣b)2=a2﹣2ab+b2,故不正確;根據完全平方公式,可知(a+b)2=a2+2ab+b2,正確.故選D.【詳解】請在此輸入詳解!5、C【解析】∵∠ACB=90°,D為AB的中點,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,點D是AB的中點,∴ED是△AFB的中位線,∴BF=2ED=3.故選C.6、B【解析】

利用多邊形的外角和是360°,正多邊形的每個外角都是36°,即可求出答案.【詳解】解:360°÷36°=10,所以這個正多邊形是正十邊形.故選:B.【點睛】本題主要考查了多邊形的外角和定理.是需要識記的內容.7、B【解析】

題目中沒有明確腰和底,故要分情況討論,再結合三角形的三邊關系分析即可.【詳解】當5為腰時,三邊長為5、5、10,而,此時無法構成三角形;當5為底時,三邊長為5、10、10,此時可以構成三角形,它的周長故選B.8、C【解析】

根據已知三點和近似滿足函數關系y=ax2+bx+c(a≠0)可以大致畫出函數圖像,并判斷對稱軸位置在36和54之間即可選擇答案.【詳解】解:由圖表數據描點連線,補全圖像可得如圖,拋物線對稱軸在36和54之間,約為41℃∴旋鈕的旋轉角度在36°和54°之間,約為41℃時,燃氣灶燒開一壺水最節省燃氣.故選:C,【點睛】本題考查了二次函數的應用,二次函數的圖像性質,熟練掌握二次函數圖像對稱性質,判斷對稱軸位置是解題關鍵.綜合性較強,需要有較高的思維能力,用圖象法解題是本題考查的重點.9、B【解析】

作DF⊥CA,交CA的延長線于點F,作DG⊥CB于點G,連接DA,DB.由CD平分∠ACB,根據角平分線的性質得出DF=DG,由HL證明△AFD≌△BGD,△CDF≌△CDG,得出CF=7,又△CDF是等腰直角三角形,從而求出CD=.【詳解】解:作DF⊥CA,垂足F在CA的延長線上,作DG⊥CB于點G,連接DA,DB.∵CD平分∠ACB,∴∠ACD=∠BCD∴DF=DG,弧AD=弧BD,∴DA=DB.∵∠AFD=∠BGD=90°,∴△AFD≌△BGD,∴AF=BG.易證△CDF≌△CDG,∴CF=CG.∵AC=6,BC=8,∴AF=1,(也可以:設AF=BG=x,BC=8,AC=6,得8-x=6+x,解x=1)∴CF=7,∵△CDF是等腰直角三角形,(這里由CFDG是正方形也可得).∴CD=.故選B.10、C【解析】

本題根據科學記數法進行計算.【詳解】因為科學記數法的標準形式為a×(1≤|a|≤10且n為整數),因此0.000000007用科學記數法法可表示為7×,故選C.【點睛】本題主要考察了科學記數法,熟練掌握科學記數法是本題解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、①②③④⑤⑥⑦.【解析】

將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.證明△MAN≌△HAN,得到MN=NH,根據三角形周長公式計算判斷①;判斷出BM=DN時,MN最小,即可判斷出⑧;根據全等三角形的性質判斷②④;將△ADF繞點A順時針性質90°得到△ABH,連接HE.證明△EAH≌△EAF,得到∠HBE=90°,根據勾股定理計算判斷③;根據等腰直角三角形的判定定理判斷⑤;根據等腰直角三角形的性質、三角形的面積公式計算,判斷⑥,根據點A到MN的距離等于正方形ABCD的邊長、三角形的面積公式計算,判斷⑦.【詳解】將△ABM繞點A逆時針旋轉,使AB與AD重合,得到△ADH.則∠DAH=∠BAM,∵四邊形ABCD是正方形,∴∠BAD=90°,∵∠MAN=45°,∴∠BAN+∠DAN=45°,∴∠NAH=45°,在△MAN和△HAN中,,∴△MAN≌△HAN,∴MN=NH=BM+DN,①正確;∵BM+DN≥1,(當且僅當BM=DN時,取等號)∴BM=DN時,MN最小,∴BM=b,∵DH=BM=b,∴DH=DN,∵AD⊥HN,∴∠DAH=∠HAN=11.5°,在DA上取一點G,使DG=DH=b,∴∠DGH=45°,HG=DH=b,∵∠DGH=45°,∠DAH=11.5°,∴∠AHG=∠HAD,∴AG=HG=b,∴AB=AD=AG+DG=b+b=b=a,∴,∴,當點M和點B重合時,點N和點C重合,此時,MN最大=AB,即:,∴≤≤1,⑧錯誤;∵MN=NH=BM+DN∴△CMN的周長=CM+CN+MN=CM+BM+CN+DN=CB+CD,∴△CMN的周長等于正方形ABCD的邊長的兩倍,②結論正確;∵△MAN≌△HAN,∴點A到MN的距離等于正方形ABCD的邊長AD,④結論正確;如圖1,將△ADF繞點A順時針性質90°得到△ABH,連接HE.∵∠DAF+∠BAE=90°-∠EAF=45°,∠DAF=∠BAE,∴∠EAH=∠EAF=45°,∵EA=EA,AH=AD,∴△EAH≌△EAF,∴EF=HE,∵∠ABH=∠ADF=45°=∠ABD,∴∠HBE=90°,在Rt△BHE中,HE1=BH1+BE1,∵BH=DF,EF=HE,∵EF1=BE1+DF1,③結論正確;∵四邊形ABCD是正方形,∴∠ADC=90°,∠BDC=∠ADB=45°,∵∠MAN=45°,∴∠EAN=∠EDN,∴A、E、N、D四點共圓,∴∠ADN+∠AEN=180°,∴∠AEN=90°∴△AEN是等腰直角三角形,同理△AFM是等腰直角三角形;⑤結論正確;∵△AEN是等腰直角三角形,同理△AFM是等腰直角三角形,∴AM=AF,AN=AE,如圖3,過點M作MP⊥AN于P,在Rt△APM中,∠MAN=45°,∴MP=AMsin45°,∵S△AMN=AN?MP=AM?AN?sin45°,S△AEF=AE?AF?sin45°,∴S△AMN:S△AEF=1,∴S△AMN=1S△AEF,⑥正確;∵點A到MN的距離等于正方形ABCD的邊長,∴S正方形ABCD:S△AMN==1AB:MN,⑦結論正確.即:正確的有①②③④⑤⑥⑦,故答案為①②③④⑤⑥⑦.【點睛】此題是四邊形綜合題,主要考查了正方形的性質,全等三角形的判定和性質,等腰直角三角形的判定和性質,解本題的關鍵是構造全等三角形.12、>【解析】分析:根據正比例函數的圖象經過點M(﹣1,1)可以求得該函數的解析式,然后根據正比例函數的性質即可解答本題.詳解:設該正比例函數的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數的圖象經過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用正比例函數的性質解答.13、1【解析】

根據多邊形的內角和定理:180°?(n-2)求解即可.【詳解】由題意可得:180°?(n-2)=150°?n,

解得n=1.

故多邊形是1邊形.14、1【解析】試題解析:∵正方體的展開圖中對面不存在公共部分,∴B與-1所在的面為對面.∴B內的數為1.故答案為1.15、1.【解析】

先由多邊形的內角和和外角和的關系判斷出多邊形的邊數,即可得到結論.【詳解】設多邊形的邊數為n.因為正多邊形內角和為(n-2)?180°,正多邊形外角和為根據題意得:(n-2)?180解得:n=8.∴這個正多邊形的每個外角=360則這個正多邊形的每個內角是180°故答案為:1.【點睛】考查多邊形的內角和與外角和,熟練掌握多邊形內角和公式是解題的關鍵.16、500【解析】

設該品牌時裝的進價為x元,根據題意列出方程,求出方程的解得到x的值,即可得到結果.【詳解】解:設該品牌時裝的進價為x元,根據題意得:1000×90%-x=80%x,解得:x=500,則該品牌時裝的進價為500元.故答案為:500.【點睛】本題考查了一元一次方程的應用,找出題中的等量關系是解本題的關鍵.17、1【解析】

首先連接BE,由題意易得BF=CF,△ACP∽△BDP,然后由相似三角形的對應邊成比例,易得DP:CP=1:3,即可得PF:CF=PF:BF=1:1,在Rt△PBF中,即可求得tan∠BPF的值,繼而求得答案.【詳解】如圖:,連接BE,∵四邊形BCED是正方形,∴DF=CF=12CD,BF=1∴BF=CF,根據題意得:AC∥BD,∴△ACP∽△BDP,∴DP:CP=BD:AC=1:3,∴DP:DF=1:1,∴DP=PF=12CF=1在Rt△PBF中,tan∠BPF=BFPF∵∠APD=∠BPF,∴tan∠APD=1.

故答案為:1【點睛】此題考查了相似三角形的判定與性質,三角函數的定義.此題難度適中,解題的關鍵是準確作出輔助線,注意轉化思想與數形結合思想的應用.三、解答題(共7小題,滿分69分)18、(1)劉徽獎的人數為人,補全統計圖見解析;(2)獲得“祖沖之獎”的學生成績的中位數是90分,眾數是90分;(3)(點在第二象限).【解析】

(1)先根據祖沖之獎的人數及其百分比求得總人數,再根據扇形圖求出趙爽獎、楊輝獎的人數,繼而根據各獎項的人數之和等于總人數求得劉徽獎的人數,據此可得;(2)根據中位數和眾數的定義求解可得;(3)列表得出所有等可能結果,再找到這個點在第二象限的結果,根據概率公式求解可得.【詳解】(1)∵獲獎的學生人數為20÷10%=200人,∴趙爽獎的人數為200×24%=48人,楊輝獎的人數為200×46%=92人,則劉徽獎的人數為200﹣(20+48+92)=40,補全統計圖如下:故答案為40;(2)獲得“祖沖之獎”的學生成績的中位數是90分,眾數是90分.故答案為90、90;(3)列表法:∵第二象限的點有(﹣2,2)和(﹣1,2),∴P(點在第二象限).【點睛】本題考查了用列表法或畫樹狀圖法求概率、頻數分布直方圖以及利用統計圖獲取信息的能力.利用統計圖獲取信息時,必須認真觀察、分析、研究統計圖,才能作出正確的判斷和解決問題,也考查列表法或畫樹狀圖法求概率.19、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運用待定系數法即可求出拋物線的解析式.(2)先根據A、C的坐標,用待定系數法求出直線AC的解析式,從而根據拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F和E對應,則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數式表示出AE、EM、CF、PF的長,根據相似三角形對應邊的比相等列出比例式,求出m的值,再根據相似三角形的性質,直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.20、(1)10,補圖見解析;(2)眾數是5,中位數是1;(3)活動時間不少于1天的學生人數大約有5400人.【解析】

(1)用1減去其他天數所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出該扇形所對圓心角的度數;根據1天的人數和所占的百分比求出總人數,再乘以8天的人數所占的百分比,即可補全統計圖;(2)根據眾數和中位數的定義即可求出答案;(3)用總人數乘以活動時間不少于1天的人數所占的百分比即可求出答案.【詳解】解:(1)扇形統計圖中a=1﹣5%﹣40%﹣20%﹣25%=10%,該扇形所對圓心角的度數為310°×10%=31°,參加社會實踐活動的天數為8天的人數是:×10%=10(人),補圖如下:故答案為10;(2)抽樣調查中總人數為100人,結合條形統計圖可得:眾數是5,中位數是1.(3)根據題意得:9000×(25%+10%+5%+20%)=5400(人),活動時間不少于1天的學生人數大約有5400人.【點睛】本題考查的是條形統計圖和扇形統計圖的綜合運用,讀懂統計圖,從不同的統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據;扇形統計圖直接反映部分占總體的百分比大小.21、(1);(2).【解析】試題分析:(1)直接列舉出兩次傳球的所有結果,球球恰在B手中的結果只有一種即可求概率;(2)畫出樹狀圖,表示出三次傳球的所有結果,三次傳球后,球恰在A手中的結果有2種,即可求出三次傳球后,球恰在A手中的概率.試題解析:解:(1)兩次傳球的所有結果有4種,分別是A→B→C,A→B→A,A→C→B,A→C→A.每種結果發生的可能性相等,球球恰在B手中的結果只有一種,所以兩次傳球后,球恰在B手中的概率是;(2)樹狀圖如下,由樹狀圖可知,三次傳球的所有結果有8種,每種結果發生的可能性相等.其中,三次傳球后,球恰在A手中的結果有A→B→C→A,A→C→B→A這兩種,所以三次傳球后,球恰在A手中的概率是.考點:用列舉法求概率.22、(1)P=t+2;(2)①當0<t≤8時,w=240;當8<t≤12時,w=2t2+12t+16;當12<t≤24時,w=﹣t2+42t+88;②此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.【解析】分析:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入求解可得P=t+2;(2)①分0<t≤8、8<t≤12和12<t≤24三種情況,根據月毛利潤=月銷量×每噸的毛利潤可得函數解析式;②求出8<t≤12和12<t≤24時,月毛利潤w在滿足336≤w≤513條件下t的取值范圍,再根據一次函數的性質可得P的最大值與最小值,二者綜合可得答案.詳解:(1)設8<t≤24時,P=kt+b,將A(8,10)、B(24,26)代入,得:,解得:,∴P=t+2;(2)①當0<t≤8時,w=(2t+8)×=240;當8<t≤12時,w=(2t+8)(t+2)=2t2+12t+16;當12<t≤24時,w=(-t+44)(t+2)=-t2+42t+88;②當8<t≤12時,w=2t2+12t+16=2(t+3)2-2,∴8<t≤12時,w隨t的增大而增大,當2(t+3)2-2=336時,解題t=10或t=-16(舍),當t=12時,w取得最大值,最大值為448,此時月銷量P=t+2在t=10時取得最小值12,在t=12時取得最大值14;當12<t≤24時,w=-t2+42t+88=-(t-21)2+529,當t=12時,w取得最小值448,由-(t-21)2+529=513得t=17或t=25,∴當12<t≤17時,448<w≤513,此時P=t+2的最小值為14,最大值為19;綜上,此范圍所對應的月銷售量P的最小值為12噸,最大值為19噸.點睛:本題主要考查二次函數的應用,掌握待定系數法求函數解析式及根據相等關系列出分段函數的解析式是解題的前提,利用二次函數的性質求得336≤w≤513所對應的t的取值范圍是解題的關鍵.23、(1)①;②;(2)150+475+475.【解析】

(1)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論