




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省龍巖市永定縣金豐片市級名校2023-2024學年中考數學押題卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知,兩數在數軸上對應的點如圖所示,下列結論正確的是()A. B. C. D.2.自2013年10月總書記提出“精準扶貧”的重要思想以來.各地積極推進精準扶貧,加大幫扶力度.全國脫貧人口數不斷增加.僅2017年我國減少的貧困人口就接近1100萬人.將1100萬人用科學記數法表示為()A.1.1×103人 B.1.1×107人 C.1.1×108人 D.11×106人3.如圖,△ABC的面積為12,AC=3,現將△ABC沿AB所在直線翻折,使點C落在直線AD上的C處,P為直線AD上的一點,則線段BP的長可能是()A.3 B.5 C.6 D.104.一次函數的圖象上有點和點,且,下列敘述正確的是A.若該函數圖象交y軸于正半軸,則B.該函數圖象必經過點C.無論m為何值,該函數圖象一定過第四象限D.該函數圖象向上平移一個單位后,會與x軸正半軸有交點5.如圖,已知射線OM,以O為圓心,任意長為半徑畫弧,與射線OM交于點A,再以點A為圓心,AO長為半徑畫弧,兩弧交于點B,畫射線OB,那么∠AOB的度數是()A.90° B.60° C.45° D.30°6.二次函數y=x2+bx–1的圖象如圖,對稱軸為直線x=1,若關于x的一元二次方程x2–2x–1–t=0(t為實數)在–1<x<4的范圍內有實數解,則t的取值范圍是A.t≥–2 B.–2≤t<7C.–2≤t<2 D.2<t<77.(2011貴州安順,4,3分)我市某一周的最高氣溫統計如下表:最高氣溫(℃)
25
26
27
28
天數
1
1
2
3
則這組數據的中位數與眾數分別是()A.27,28 B.27.5,28 C.28,27 D.26.5,278.已知x+=3,則x2+=()A.7 B.9 C.11 D.89.如圖,邊長為1的正方形ABCD繞點A逆時針旋轉30°到正方形AB’C’D’,圖中陰影部分的面積為().A. B. C. D.10.如圖,在△ABC中,點D在AB邊上,DE∥BC,與邊AC交于點E,連結BE,記△ADE,△BCE的面積分別為S1,S2,()A.若2AD>AB,則3S1>2S2 B.若2AD>AB,則3S1<2S2C.若2AD<AB,則3S1>2S2 D.若2AD<AB,則3S1<2S2二、填空題(共7小題,每小題3分,滿分21分)11.如圖,在正六邊形ABCDEF中,AC于FB相交于點G,則值為_____.12.計算(x4)2的結果等于_____.13.如圖,矩形ABCD中,AB=4,BC=8,P,Q分別是直線BC,AB上的兩個動點,AE=2,△AEQ沿EQ翻折形成△FEQ,連接PF,PD,則PF+PD的最小值是____.14.為響應“書香成都”建設的號召,在全校形成良好的人文閱讀風尚,成都市某中學隨機調查了部分學生平均每天的閱讀時間,統計結果如圖所示,則在本次調查中,閱讀時間的中位數是________小時.15.在Rt△ABC紙片上剪出7個如圖所示的正方形,點E,F落在AB邊上,每個正方形的邊長為1,則Rt△ABC的面積為_____.16.如圖,在△ABC中,點D是AB邊上的一點,若∠ACD=∠B,AD=1,AC=2,△ADC的面積為1,則△BCD的面積為_____.17.如圖,在平面直角坐標系中,已知拋物線y=x2+bx+c過A,B,C三點,點A的坐標是(3,0),點C的坐標是(0,-3),動點P在拋物線上.b=_________,c=_________,點B的坐標為_____________;(直接填寫結果)是否存在點P,使得△ACP是以AC為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標;若不存在,說明理由;過動點P作PE垂直y軸于點E,交直線AC于點D,過點D作x軸的垂線.垂足為F,連接EF,當線段EF的長度最短時,求出點P的坐標.三、解答題(共7小題,滿分69分)18.(10分)某校組織學生去9km外的郊區游玩,一部分學生騎自行車先走,半小時后,其他學生乘公共汽車出發,結果他們同時到達.己知公共汽車的速度是自行車速度的3倍,求自行車的速度和公共汽車的速度分別是多少?19.(5分)已知,,,斜邊,將繞點順時針旋轉,如圖1,連接.(1)填空:;(2)如圖1,連接,作,垂足為,求的長度;(3)如圖2,點,同時從點出發,在邊上運動,沿路徑勻速運動,沿路徑勻速運動,當兩點相遇時運動停止,已知點的運動速度為1.5單位秒,點的運動速度為1單位秒,設運動時間為秒,的面積為,求當為何值時取得最大值?最大值為多少?20.(8分)如圖,在矩形ABCD中,對角線AC的垂直平分線EF分別交AD、AC、BC于點E、O、F,連接CE和AF.(1)求證:四邊形AECF為菱形;(2)若AB=4,BC=8,求菱形AECF的周長.21.(10分)如圖,在平面直角坐標系中,△AOB的三個頂點坐標分別為A(1,0),O(0,0),B(2,2).以點O為旋轉中心,將△AOB逆時針旋轉90°,得到△A1OB1.畫出△A1OB1;直接寫出點A1和點B1的坐標;求線段OB1的長度.22.(10分)如圖,MN是一條東西方向的海岸線,在海岸線上的A處測得一海島在南偏西32°的方向上,向東走過780米后到達B處,測得海島在南偏西37°的方向,求小島到海岸線的距離.(參考數據:tan37°=cot53°≈0.755,cot37°=tan53°≈1.327,tan32°=cot58°≈0.625,cot32°=tan58°≈1.1.)23.(12分)如圖,已知⊙O經過△ABC的頂點A、B,交邊BC于點D,點A恰為的中點,且BD=8,AC=9,sinC=,求⊙O的半徑.24.(14分)已知:如圖,A、C、F、D在同一直線上,AF=DC,AB=DE,BC=EF,求證:△ABC≌△DEF.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、C【解析】
根據各點在數軸上位置即可得出結論.【詳解】由圖可知,b<a<0,A.
∵b<a<0,∴a+b<0,故本選項錯誤;B.
∵b<a<0,∴ab>0,故本選項錯誤;C.
∵b<a<0,∴a>b,故本選項正確;D.
∵b<a<0,∴b?a<0,故本選項錯誤.故選C.2、B【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】解:1100萬=11000000=1.1×107.故選B.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.3、D【解析】
過B作BN⊥AC于N,BM⊥AD于M,根據折疊得出∠C′AB=∠CAB,根據角平分線性質得出BN=BM,根據三角形的面積求出BN,即可得出點B到AD的最短距離是8,得出選項即可.【詳解】解:如圖:
過B作BN⊥AC于N,BM⊥AD于M,
∵將△ABC沿AB所在直線翻折,使點C落在直線AD上的C′處,
∴∠C′AB=∠CAB,
∴BN=BM,
∵△ABC的面積等于12,邊AC=3,
∴×AC×BN=12,
∴BN=8,
∴BM=8,
即點B到AD的最短距離是8,
∴BP的長不小于8,
即只有選項D符合,
故選D.【點睛】本題考查的知識點是折疊的性質,三角形的面積,角平分線性質的應用,解題關鍵是求出B到AD的最短距離,注意:角平分線上的點到角的兩邊的距離相等.4、B【解析】
利用一次函數的性質逐一進行判斷后即可得到正確的結論.【詳解】解:一次函數的圖象與y軸的交點在y軸的正半軸上,則,,若,則,故A錯誤;
把代入得,,則該函數圖象必經過點,故B正確;
當時,,,函數圖象過一二三象限,不過第四象限,故C錯誤;
函數圖象向上平移一個單位后,函數變為,所以當時,,故函數圖象向上平移一個單位后,會與x軸負半軸有交點,故D錯誤,
故選B.【點睛】本題考查了一次函數圖象上點的坐標特征、一次函數圖象與幾何變換,解題的關鍵是熟練掌握一次函數的性質,靈活應用這些知識解決問題,屬于中考常考題型.5、B【解析】
首先連接AB,由題意易證得△AOB是等邊三角形,根據等邊三角形的性質,可求得∠AOB的度數.【詳解】連接AB,根據題意得:OB=OA=AB,∴△AOB是等邊三角形,∴∠AOB=60°.故答案選:B.【點睛】本題考查了等邊三角形的判定與性質,解題的關鍵是熟練的掌握等邊三角形的判定與性質.6、B【解析】
利用對稱性方程求出b得到拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),再計算當﹣1<x<4時對應的函數值的范圍為﹣2≤y<7,由于關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,然后利用函數圖象可得到t的范圍.【詳解】拋物線的對稱軸為直線x=﹣=1,解得b=﹣2,∴拋物線解析式為y=x2﹣2x﹣1,則頂點坐標為(1,﹣2),當x=﹣1時,y=x2﹣2x﹣1=2;當x=4時,y=x2﹣2x﹣1=7,當﹣1<x<4時,﹣2≤y<7,而關于x的一元二次方程x2﹣2x﹣1﹣t=0(t為實數)在﹣1<x<4的范圍內有實數解可看作二次函數y=x2﹣2x﹣1與直線y=t有交點,∴﹣2≤t<7,故選B.【點睛】本題考查了二次函數的性質、拋物線與x軸的交點、二次函數與一元二次方程,把求二次函數y=ax2+bx+c(a,b,c是常數,a≠0)與x軸的交點坐標問題轉化為解關于x的一元二次方程是解題的關鍵.7、A【解析】根據表格可知:數據25出現1次,26出現1次,27出現2次,28出現3次,∴眾數是28,這組數據從小到大排列為:25,26,27,27,28,28,28∴中位數是27∴這周最高氣溫的中位數與眾數分別是27,28故選A.8、A【解析】
根據完全平方公式即可求出答案.【詳解】∵(x+)2=x2+2+∴9=2+x2+,∴x2+=7,故選A.【點睛】本題考查完全平方公式,解題的關鍵是熟練運用完全平方公式.9、C【解析】
設B′C′與CD的交點為E,連接AE,利用“HL”證明Rt△AB′E和Rt△ADE全等,根據全等三角形對應角相等∠DAE=∠B′AE,再根據旋轉角求出∠DAB′=60°,然后求出∠DAE=30°,再解直角三角形求出DE,然后根據陰影部分的面積=正方形ABCD的面積﹣四邊形ADEB′的面積,列式計算即可得解.【詳解】如圖,設B′C′與CD的交點為E,連接AE,在Rt△AB′E和Rt△ADE中,,∴Rt△AB′E≌Rt△ADE(HL),∴∠DAE=∠B′AE,∵旋轉角為30°,∴∠DAB′=60°,∴∠DAE=×60°=30°,∴DE=1×=,∴陰影部分的面積=1×1﹣2×(×1×)=1﹣.故選C.【點睛】本題考查了旋轉的性質,正方形的性質,全等三角形判定與性質,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,從而求出∠DAE=30°是解題的關鍵,也是本題的難點.10、D【解析】
根據題意判定△ADE∽△ABC,由相似三角形的面積之比等于相似比的平方解答.【詳解】∵如圖,在△ABC中,DE∥BC,∴△ADE∽△ABC,∴,∴若1AD>AB,即時,,此時3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能確定3S1與1S1的大小,故選項A不符合題意,選項B不符合題意.若1AD<AB,即時,,此時3S1<S1+S△BDE<1S1,故選項C不符合題意,選項D符合題意.故選D.【點睛】考查了相似三角形的判定與性質,三角形相似的判定一直是中考考查的熱點之一,在判定兩個三角形相似時,應注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構造相似三角形.二、填空題(共7小題,每小題3分,滿分21分)11、.【解析】
由正六邊形的性質得出AB=BC=AF,∠ABC=∠BAF=120°,由等腰三角形的性質得出∠ABF=∠BAC=∠BCA=30°,證出AG=BG,∠CBG=90°,由含30°角的直角三角形的性質得出CG=2BG=2AG,即可得出答案.【詳解】∵六邊形ABCDEF是正六邊形,∴AB=BC=AF,∠ABC=∠BAF=120°,∴∠ABF=∠BAC=∠BCA=30°,∴AG=BG,∠CBG=90°,∴CG=2BG=2AG,∴=;故答案為:.【點睛】本題考查了正六邊形的性質、等腰三角形的判定、含30°角的直角三角形的性質等知識;熟練掌握正六邊形的性質和含30°角的直角三角形的性質是解題的關鍵.12、x1【解析】分析:直接利用冪的乘方運算法則計算得出答案.詳解:(x4)2=x4×2=x1.故答案為x1.點睛:本題主要考查了冪的乘方運算,正確掌握運算法則是解題的關鍵.13、1【解析】
如圖作點D關于BC的對稱點D′,連接PD′,ED′,由DP=PD′,推出PD+PF=PD′+PF,又EF=EA=2是定值,即可推出當E、F、P、D′共線時,PF+PD′定值最小,最小值=ED′﹣EF.【詳解】如圖作點D關于BC的對稱點D′,連接PD′,ED′,在Rt△EDD′中,∵DE=6,DD′=1,∴ED′==10,∵DP=PD′,∴PD+PF=PD′+PF,∵EF=EA=2是定值,∴當E、F、P、D′共線時,PF+PD′定值最小,最小值=10﹣2=1,∴PF+PD的最小值為1,故答案為1.【點睛】本題考查翻折變換、矩形的性質、勾股定理等知識,解題的關鍵是學會利用軸對稱,根據兩點之間線段最短解決最短問題.14、1【解析】由統計圖可知共有:8+19+10+3=40人,中位數應為第20與第21個的平均數,而第20個數和第21個數都是1(小時),則中位數是1小時.故答案為1.15、【解析】
如圖,設AH=x,GB=y,利用平行線分線段成比例定理,構建方程組求出x,y即可解決問題.【詳解】解:如圖,設AH=x,GB=y,∵EH∥BC,,∵FG∥AC,,由①②可得x=,y=2,∴AC=,BC=7,∴S△ABC=,故答案為.【點睛】本題考查圖形的相似,平行線分線段成比例定理,解題的關鍵是學會利用參數構建方程組解決問題,屬于中考常考題型.16、1【解析】
由∠ACD=∠B結合公共角∠A=∠A,即可證出△ACD∽△ABC,根據相似三角形的性質可得出=()2=,結合△ADC的面積為1,即可求出△BCD的面積.【詳解】∵∠ACD=∠B,∠DAC=∠CAB,∴△ACD∽△ABC,∴=()2=()2=,∴S△ABC=4S△ACD=4,∴S△BCD=S△ABC﹣S△ACD=4﹣1=1.故答案為1.【點睛】本題考查相似三角形的判定與性質,解題的關鍵是掌握相似三角形的判定與性質.17、(1),,(-1,0);(2)存在P的坐標是或;(1)當EF最短時,點P的坐標是:(,)或(,)【解析】
(1)將點A和點C的坐標代入拋物線的解析式可求得b、c的值,然后令y=0可求得點B的坐標;(2)分別過點C和點A作AC的垂線,將拋物線與P1,P2兩點先求得AC的解析式,然后可求得P1C和P2A的解析式,最后再求得P1C和P2A與拋物線的交點坐標即可;(1)連接OD.先證明四邊形OEDF為矩形,從而得到OD=EF,然后根據垂線段最短可求得點D的縱坐標,從而得到點P的縱坐標,然后由拋物線的解析式可求得點P的坐標.【詳解】解:(1)∵將點A和點C的坐標代入拋物線的解析式得:,解得:b=﹣2,c=﹣1,∴拋物線的解析式為.∵令,解得:,,∴點B的坐標為(﹣1,0).故答案為﹣2;﹣1;(﹣1,0).(2)存在.理由:如圖所示:①當∠ACP1=90°.由(1)可知點A的坐標為(1,0).設AC的解析式為y=kx﹣1.∵將點A的坐標代入得1k﹣1=0,解得k=1,∴直線AC的解析式為y=x﹣1,∴直線CP1的解析式為y=﹣x﹣1.∵將y=﹣x﹣1與聯立解得,(舍去),∴點P1的坐標為(1,﹣4).②當∠P2AC=90°時.設AP2的解析式為y=﹣x+b.∵將x=1,y=0代入得:﹣1+b=0,解得b=1,∴直線AP2的解析式為y=﹣x+1.∵將y=﹣x+1與聯立解得=﹣2,=1(舍去),∴點P2的坐標為(﹣2,5).綜上所述,P的坐標是(1,﹣4)或(﹣2,5).(1)如圖2所示:連接OD.由題意可知,四邊形OFDE是矩形,則OD=EF.根據垂線段最短,可得當OD⊥AC時,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=1,OD⊥AC,∴D是AC的中點.又∵DF∥OC,∴DF=OC=,∴點P的縱坐標是,∴,解得:x=,∴當EF最短時,點P的坐標是:(,)或(,).三、解答題(共7小題,滿分69分)18、自行車的速度是12km/h,公共汽車的速度是1km/h.【解析】
設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解分式方程即可.【詳解】解:設自行車的速度為xkm/h,則公共汽車的速度為3xkm/h,根據題意得:,解得:x=12,經檢驗,x=12是原分式方程的解,∴3x=1.答:自行車的速度是12km/h,公共汽車的速度是1km/h.【點睛】本題考核知識點:列分式方程解應用題.解題關鍵點:找出相等關系,列出方程.19、(1)1;(2);(3)x時,y有最大值,最大值.【解析】
(1)只要證明△OBC是等邊三角形即可;(2)求出△AOC的面積,利用三角形的面積公式計算即可;(3)分三種情形討論求解即可解決問題:①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.②當x≤4時,M在BC上運動,N在OB上運動.③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.【詳解】(1)由旋轉性質可知:OB=OC,∠BOC=1°,∴△OBC是等邊三角形,∴∠OBC=1°.故答案為1.(2)如圖1中.∵OB=4,∠ABO=30°,∴OAOB=2,ABOA=2,∴S△AOC?OA?AB2×2.∵△BOC是等邊三角形,∴∠OBC=1°,∠ABC=∠ABO+∠OBC=90°,∴AC,∴OP.(3)①當0<x時,M在OC上運動,N在OB上運動,此時過點N作NE⊥OC且交OC于點E.則NE=ON?sin1°x,∴S△OMN?OM?NE1.5xx,∴yx2,∴x時,y有最大值,最大值.②當x≤4時,M在BC上運動,N在OB上運動.作MH⊥OB于H.則BM=8﹣1.5x,MH=BM?sin1°(8﹣1.5x),∴yON×MHx2+2x.當x時,y取最大值,y,③當4<x≤4.8時,M、N都在BC上運動,作OG⊥BC于G.MN=12﹣2.5x,OG=AB=2,∴y?MN?OG=12x,當x=4時,y有最大值,最大值=2.綜上所述:y有最大值,最大值為.【點睛】本題考查幾何變換綜合題、30度的直角三角形的性質、等邊三角形的判定和性質、三角形的面積等知識,解題的關鍵是學會用分類討論的思想思考問題.20、(1)見解析;(2)1【解析】
(1)根據ASA推出:△AEO≌△CFO;根據全等得出OE=OF,推出四邊形是平行四邊形,再根據EF⊥AC即可推出四邊形是菱形;(2)根據線段垂直平分線性質得出AF=CF,設AF=x,推出AF=CF=x,BF=8-x.在Rt△ABF中,由勾股定理求出x的值,即可得到結論.【詳解】(1)∵EF是AC的垂直平分線,∴AO=OC,∠AOE=∠COF=90°.∵四邊形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO.在△AEO和△CFO中,∵,∴△AEO≌△CFO(ASA);∴OE=OF.又∵OA=OC,∴四邊形AECF是平行四邊形.又∵EF⊥AC,∴平行四邊形AECF是菱形;(2)設AF=x.∵EF是AC的垂直平分線,∴AF=CF=x,BF=8﹣x.在Rt△ABF中,由勾股定理得:AB2+BF2=AF2,∴42+(8﹣x)2=x2,解得:x=5,∴AF=5,∴菱形AECF的周長為1.【點睛】本題考查了勾股定理,矩形性質,平行四邊形的判定,菱形的判定,全等三角形的性質和判定,平行線的性質等知識點的綜合運用,用了方程思想.21、(1)作圖見解析;(2)A1(0,1),點B1(﹣2,2).(3)【解析】
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 寧夏民族職業技術學院《SAS與統計分析》2023-2024學年第一學期期末試卷
- 內蒙古烏海二十二中學2025年高中畢業班下學期開學考試語文試題含解析
- 延安市延長縣2025屆三下數學期末經典試題含解析
- 南開大學《商務英語視聽說I》2023-2024學年第二學期期末試卷
- 臨床護理敏感質量指標解讀
- 二零二五最簡單山林租賃合同書
- 商場門面商鋪租賃合同書范例
- 公司勞務派遣用工合同書二零二五年
- 二零二五版人力資源招聘合同范例
- 企業運輸合同二零二五年
- 河西黃金金礦集團各專業管理考核制度
- 浙西南紅軍歌曲賞析知到章節答案智慧樹2023年麗水學院
- 裝載機司機崗位安全達標考試試題及答案
- 2023屆天津市和平區二十一中八年級物理第二學期期中檢測試題含解析
- 2023年北京石景山區招聘社區工作者425人筆試備考題庫及答案解析
- 大型住宅項目完美交付經驗分享
- GB/T 4909.2-2009裸電線試驗方法第2部分:尺寸測量
- GB/T 29304-2012爆炸危險場所防爆安全導則
- GB/T 233-2000金屬材料頂鍛試驗方法
- 09S304 衛生設備安裝圖集
- 全新版大學進階英語第二冊-Unit-4-Study-Abroad課件
評論
0/150
提交評論