北京市通州區名校2024屆中考適應性考試數學試題含解析_第1頁
北京市通州區名校2024屆中考適應性考試數學試題含解析_第2頁
北京市通州區名校2024屆中考適應性考試數學試題含解析_第3頁
北京市通州區名校2024屆中考適應性考試數學試題含解析_第4頁
北京市通州區名校2024屆中考適應性考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

北京市通州區名校2024屆中考適應性考試數學試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,已知△ABC中,∠A=75°,則∠1+∠2=()A.335°° B.255° C.155° D.150°2.如圖,PA和PB是⊙O的切線,點A和B是切點,AC是⊙O的直徑,已知∠P=40°,則∠ACB的大小是()A.60° B.65° C.70° D.75°3.設x1,x2是一元二次方程x2﹣2x﹣3=0的兩根,則x12+x22=()A.6B.8C.10D.124.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=60°,則∠2的度數是()A.60° B.50° C.40° D.30°5.九年級學生去距學校10km的博物館參觀,一部分學生騎自行車先走,過了20min后,其余學生乘汽車出發,結果他們同時到達.已知汽車的速度是騎車學生速度的2倍,求騎車學生的速度.設騎車學生的速度為xkm/h,則所列方程正確的是()A. B.C. D.6.若正比例函數y=kx的圖象上一點(除原點外)到x軸的距離與到y軸的距離之比為3,且y值隨著x值的增大而減小,則k的值為()A.﹣ B.﹣3 C. D.37.某春季田徑運動會上,參加男子跳高的15名運動員的成績如下表所示:成績人數這些運動員跳高成績的中位數是()A. B. C. D.8.每個人都應懷有對水的敬畏之心,從點滴做起,節水、愛水,保護我們生活的美好世界.某地近年來持續干旱,為倡導節約用水,該地采用了“階梯水價”計費方法,具體方法:每戶每月用水量不超過4噸的每噸2元;超過4噸而不超過6噸的,超出4噸的部分每噸4元;超過6噸的,超出6噸的部分每噸6元.該地一家庭記錄了去年12個月的月用水量如下表,下列關于用水量的統計量不會發生改變的是()用水量x(噸)34567頻數1254﹣xxA.平均數、中位數B.眾數、中位數C.平均數、方差D.眾數、方差9.魏晉時期的數學家劉徽首創割圓術.為計算圓周率建立了嚴密的理論和完善的算法.作圓內接正多邊形,當正多邊形的邊數不斷增加時,其周長就無限接近圓的周長,進而可用來求得較為精確的圓周率.祖沖之在劉徽的基礎上繼續努力,當正多邊形的邊數增加24576時,得到了精確到小數點后七位的圓周率,這一成就在當時是領先其他國家一千多年,如圖,依據“割圓術”,由圓內接正六邊形算得的圓周率的近似值是()A.0.5 B.1 C.3 D.π10.已知一組數據,,,,的平均數是2,方差是,那么另一組數據,,,,,的平均數和方差分別是.A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,AB∥CD,∠1=62°,FG平分∠EFD,則∠2=.12.圓錐的底面半徑是4cm,母線長是5cm,則圓錐的側面積等于_____cm1.13.若正多邊形的一個內角等于140°,則這個正多邊形的邊數是_______.14.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側面積為_____.15.已知一組數據4,x,5,y,7,9的平均數為6,眾數為5,則這組數據的中位數是_____.16.因式分解:16a3﹣4a=_____.三、解答題(共8題,共72分)17.(8分)某通訊公司推出了A,B兩種上寬帶網的收費方式(詳情見下表)設月上網時間為xh(x為非負整數),請根據表中提供的信息回答下列問題(1)設方案A的收費金額為y1元,方案B的收費金額為y2元,分別寫出y1,y2關于x的函數關系式;(2)當35<x<50時,選取哪種方式能節省上網費,請說明理由18.(8分)如圖,已知反比例函數和一次函數的圖象相交于第一象限內的點A,且點A的橫坐標為1.過點A作AB⊥x軸于點B,△AOB的面積為1.求反比例函數和一次函數的解析式.若一次函數的圖象與x軸相交于點C,求∠ACO的度數.結合圖象直接寫出:當>>0時,x的取值范圍.19.(8分)如圖,已知二次函數與x軸交于A、B兩點,A在B左側,點C是點A下方,且AC⊥x軸.(1)已知A(-3,0),B(-1,0),AC=OA.①求拋物線解析式和直線OC的解析式;②點P從O出發,以每秒2個單位的速度沿x軸負半軸方向運動,Q從O出發,以每秒個單位的速度沿OC方向運動,運動時間為t.直線PQ與拋物線的一個交點記為M,當2PM=QM時,求t的值(直接寫出結果,不需要寫過程)(2)過C作直線EF與拋物線交于E、F兩點(E、F在x軸下方),過E作EG⊥x軸于G,連CG,BF,求證:CG∥BF20.(8分)關于x的一元二次方程mx2﹣(2m﹣3)x+(m﹣1)=0有兩個實數根.求m的取值范圍;若m為正整數,求此方程的根.21.(8分)如圖1,將兩個完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.操作發現如圖1,固定△ABC,使△DEC繞點C旋轉.當點D恰好落在BC邊上時,填空:線段DE與AC的位置關系是;②設△BDC的面積為S1,△AEC的面積為S1.則S1與S1的數量關系是.猜想論證當△DEC繞點C旋轉到圖3所示的位置時,小明猜想(1)中S1與S1的數量關系仍然成立,并嘗試分別作出了△BDC和△AEC中BC,CE邊上的高,請你證明小明的猜想.拓展探究已知∠ABC=60°,點D是其角平分線上一點,BD=CD=4,OE∥AB交BC于點E(如圖4),若在射線BA上存在點F,使S△DCF=S△BDC,請直接寫出相應的BF的長22.(10分)為了解某校九年級男生1000米跑的水平,從中隨機抽取部分男生進行測試,并把測試成績分為D、C、B、A四個等次繪制成如圖所示的不完整的統計圖,請你依圖解答下列問題:(1)a=,b=,c=;(2)扇形統計圖中表示C等次的扇形所對的圓心角的度數為度;(3)學校決定從A等次的甲、乙、丙、丁四名男生中,隨機選取兩名男生參加全市中學生1000米跑比賽,請用列表法或畫樹狀圖法,求甲、乙兩名男生同時被選中的概率.23.(12分)如圖,△ABC三個定點坐標分別為A(﹣1,3),B(﹣1,1),C(﹣3,2).請畫出△ABC關于y軸對稱的△A1B1C1;以原點O為位似中心,將△A1B1C1放大為原來的2倍,得到△A2B2C2,請在第三象限內畫出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.24.先化簡,再求值:,其中.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故選B.點睛:本題考查了三角形、四邊形內角和定理,掌握n邊形內角和為(n﹣2)×180°(n≥3且n為整數)是解題的關鍵.2、C【解析】試題分析:連接OB,根據PA、PB為切線可得:∠OAP=∠OBP=90°,根據四邊形AOBP的內角和定理可得∠AOB=140°,∵OC=OB,則∠C=∠OBC,根據∠AOB為△OBC的外角可得:∠ACB=140°÷2=70°.考點:切線的性質、三角形外角的性質、圓的基本性質.3、C【解析】試題分析:根據根與系數的關系得到x1+x2=2,x1?x2=﹣3,再變形x12+x22得到(x1+x2)2﹣2x1?x2,然后利用代入計算即可.解:∵一元二次方程x2﹣2x﹣3=0的兩根是x1、x2,∴x1+x2=2,x1?x2=﹣3,∴x12+x22=(x1+x2)2﹣2x1?x2=22﹣2×(﹣3)=1.故選C.4、D【解析】

由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數,再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.【點睛】本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據平行線的性質,找出相等、互余或互補的角.5、C【解析】試題分析:設騎車學生的速度為xkm/h,則汽車的速度為2xkm/h,由題意得,.故選C.考點:由實際問題抽象出分式方程.6、B【解析】

設該點的坐標為(a,b),則|b|=1|a|,利用一次函數圖象上的點的坐標特征可得出k=±1,再利用正比例函數的性質可得出k=-1,此題得解.【詳解】設該點的坐標為(a,b),則|b|=1|a|,∵點(a,b)在正比例函數y=kx的圖象上,∴k=±1.又∵y值隨著x值的增大而減小,∴k=﹣1.故選:B.【點睛】本題考查了一次函數圖象上點的坐標特征以及正比例函數的性質,利用一次函數圖象上點的坐標特征,找出k=±1是解題的關鍵.7、C【解析】

根據中位數的定義解答即可.【詳解】解:在這15個數中,處于中間位置的第8個數是1.1,所以中位數是1.1.

所以這些運動員跳高成績的中位數是1.1.

故選:C.【點睛】本題考查了中位數的意義.中位數是將一組數據從小到大(或從大到小)重新排列后,最中間的那個數(最中間兩個數的平均數),叫做這組數據的中位數.8、B【解析】

由頻數分布表可知后兩組的頻數和為4,即可得知頻數之和,結合前兩組的頻數知第6、7個數據的平均數,可得答案.【詳解】∵6噸和7噸的頻數之和為4-x+x=4,∴頻數之和為1+2+5+4=12,則這組數據的中位數為第6、7個數據的平均數,即5+52∴對于不同的正整數x,中位數不會發生改變,∵后兩組頻數和等于4,小于5,∴對于不同的正整數x,眾數不會發生改變,眾數依然是5噸.故選B.【點睛】本題主要考查頻數分布表及統計量的選擇,由表中數據得出數據的總數是根本,熟練掌握平均數、中位數、眾數的定義和計算方法是解題的關鍵.9、C【解析】

連接OC、OD,根據正六邊形的性質得到∠COD=60°,得到△COD是等邊三角形,得到OC=CD,根據題意計算即可.【詳解】連接OC、OD,∵六邊形ABCDEF是正六邊形,∴∠COD=60°,又OC=OD,∴△COD是等邊三角形,∴OC=CD,正六邊形的周長:圓的直徑=6CD:2CD=3,故選:C.【點睛】本題考查的是正多邊形和圓,掌握正多邊形的中心角的計算公式是解題的關鍵.10、D【解析】

根據數據的變化和其平均數及方差的變化規律求得新數據的平均數及方差即可.【詳解】解:∵數據x1,x2,x3,x4,x5的平均數是2,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均數是3×2-2=4;∵數據x1,x2,x3,x4,x5的方差為,∴數據3x1,3x2,3x3,3x4,3x5的方差是×32=3,∴數據3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是3,故選D.【點睛】本題考查了方差的知識,說明了當數據都加上一個數(或減去一個數)時,平均數也加或減這個數,方差不變,即數據的波動情況不變;當數據都乘以一個數(或除以一個數)時,平均數也乘以或除以這個數,方差變為這個數的平方倍.二、填空題(本大題共6個小題,每小題3分,共18分)11、31°.【解析】試題分析:由AB∥CD,根據平行線的性質得∠1=∠EFD=62°,然后根據角平分線的定義即可得到∠2的度數.∵AB∥CD,∴∠1=∠EFD=62°,∵FG平分∠EFD,∴∠2=12∠EFD=1故答案是31°.考點:平行線的性質.12、10π【解析】

解:根據圓錐的側面積公式可得這個圓錐的側面積=?1π?4?5=10π(cm1).故答案為:10π【點睛】本題考查圓錐的計算.13、1【解析】試題分析:此題主要考查了多邊形的外角與內角,做此類題目,首先求出正多邊形的外角度數,再利用外角和定理求出求邊數.首先根據求出外角度數,再利用外角和定理求出邊數.∵正多邊形的一個內角是140°,∴它的外角是:180°-140°=40°,360°÷40°=1.故答案為1.考點:多邊形內角與外角.14、20π【解析】

利用勾股定理可求得圓錐的母線長,然后根據圓錐的側面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側面積的計算方法.解題的關鍵是熟記圓錐的側面展開扇形的面積計算方法.15、1.1【解析】【分析】先判斷出x,y中至少有一個是1,再用平均數求出x+y=11,即可得出結論.【詳解】∵一組數據4,x,1,y,7,9的眾數為1,∴x,y中至少有一個是1,∵一組數據4,x,1,y,7,9的平均數為6,∴(4+x+1+y+7+9)=6,∴x+y=11,∴x,y中一個是1,另一個是6,∴這組數為4,1,1,6,7,9,∴這組數據的中位數是×(1+6)=1.1,故答案為:1.1.【點睛】本題考查了眾數、平均數、中位數等概念,熟練掌握眾數、平均數、中位數的概念、判斷出x,y中至少有一個是1是解本題的關鍵.16、4a(2a+1)(2a﹣1)【解析】

首先提取公因式,再利用平方差公式分解即可.【詳解】原式=4a(4a2﹣1)=4a(2a+1)(2a﹣1),故答案為4a(2a+1)(2a﹣1)【點睛】本題考查了提公因式法與公式法的綜合運用,解題的關鍵是熟練掌握因式分解的方法.三、解答題(共8題,共72分)17、(1),;(2)當35<x<1時,選擇B方式能節省上網費,見解析.【解析】

(1)根據兩種方式的收費標準,進行分類討論即可求解;

(2)當35<x<1時,計算出y1-y2的值,即可得出答案.【詳解】解:(1)由題意得:;即;;即;(2)選擇B方式能節省上網費當35<x<1時,有y1=3x-45,y2=1.:y1-y2=3x-45-1=3x-2.記y=3x-2因為3>4,有y隨x的增大而增大當x=35時,y=3.所以當35<x<1時,有y>3,即y>4.所以當35<x<1時,選擇B方式能節省上網費【點睛】此題考查了一次函數的應用,注意根據圖表得出解題需要的信息,難度一般,正確理解收費標準求出函數解析式是解題的關鍵.18、(1)y=;y=x+1;(2)∠ACO=45°;(3)0<x<1.【解析】

(1)根據△AOB的面積可求AB,得A點坐標.從而易求兩個函數的解析式;(2)求出C點坐標,在△ABC中運用三角函數可求∠ACO的度數;(3)觀察第一象限內的圖形,反比例函數的圖象在一次函數的圖象的上面部分對應的x的值即為取值范圍.【詳解】(1)∵△AOB的面積為1,并且點A在第一象限,∴k=2,∴y=;∵點A的橫坐標為1,∴A(1,2).把A(1,2)代入y=ax+1得,a=1.∴y=x+1.(2)令y=0,0=x+1,∴x=?1,∴C(?1,0).∴OC=1,BC=OB+OC=2.∴AB=CB,∴∠ACO=45°.(3)由圖象可知,在第一象限,當y>y>0時,0<x<1.在第三象限,當y>y>0時,?1<x<0(舍去).【點睛】此題考查反比例函數與一次函數的交點問題,解題關鍵在于結合函數圖象進行解答.19、(1)①y=-x2-4x-3;y=x;②t=或;(2)證明見解析.【解析】

(1)把A(-3,0),B(-1,0)代入二次函數解析式即可求出;由AC=OA知C點坐標為(-3,-3),故可求出直線OC的解析式;②由題意得OP=2t,P(-2t,0),過Q作QH⊥x軸于H,得OH=HQ=t,可得Q(-t,-t),直線PQ為y=-x-2t,過M作MG⊥x軸于G,由,則2PG=GH,由,得,于是,解得,從而求出M(-3t,t)或M(),再分情況計算即可;(2)過F作FH⊥x軸于H,想辦法證得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得證.【詳解】解:(1)①把A(-3,0),B(-1,0)代入二次函數解析式得解得∴y=-x2-4x-3;由AC=OA知C點坐標為(-3,-3),∴直線OC的解析式y=x;②OP=2t,P(-2t,0),過Q作QH⊥x軸于H,∵QO=,∴OH=HQ=t,∴Q(-t,-t),∴PQ:y=-x-2t,過M作MG⊥x軸于G,∴,∴2PG=GH∴,即,∴,∴,∴M(-3t,t)或M()當M(-3t,t)時:,∴當M()時:,∴綜上:或(2)設A(m,0)、B(n,0),∴m、n為方程x2-bx-c=0的兩根,∴m+n=b,mn=-c,∴y=-x2+(m+n)x-mn=-(x-m)(x-n),∵E、F在拋物線上,設、,設EF:y=kx+b,∴,∴∴∴,令x=m∴=∴AC=,又∵,∴tan∠CAG=,另一方面:過F作FH⊥x軸于H,∴,,∴tan∠FBH=∴tan∠CAG=tan∠FBH∴∠CAG=∠FBH∴CG∥BF【點睛】此題主要考查二次函數的綜合問題,解題的關鍵是熟知相似三角形的判定與性質及正確作出輔助線進行求解.20、(1)且;(2),.【解析】

(1)根據一元二次方程的定義和判別式的意義得到m≠0且≥0,然后求出兩個不等式的公共部分即可;

(2)利用m的范圍可確定m=1,則原方程化為x2+x=0,然后利用因式分解法解方程.【詳解】(1)∵.解得且.(2)∵為正整數,∴.∴原方程為.解得,.【點睛】考查一元二次方程根的判別式,當時,方程有兩個不相等的實數根.當時,方程有兩個相等的實數根.當時,方程沒有實數根.21、解:(1)①DE∥AC.②.(1)仍然成立,證明見解析;(3)3或2.【解析】

(1)①由旋轉可知:AC=DC,∵∠C=90°,∠B=∠DCE=30°,∴∠DAC=∠CDE=20°.∴△ADC是等邊三角形.∴∠DCA=20°.∴∠DCA=∠CDE=20°.∴DE∥AC.②過D作DN⊥AC交AC于點N,過E作EM⊥AC交AC延長線于M,過C作CF⊥AB交AB于點F.由①可知:△ADC是等邊三角形,DE∥AC,∴DN=CF,DN=EM.∴CF=EM.∵∠C=90°,∠B=30°∴AB=1AC.又∵AD=AC∴BD=AC.∵∴.(1)如圖,過點D作DM⊥BC于M,過點A作AN⊥CE交EC的延長線于N,

∵△DEC是由△ABC繞點C旋轉得到,

∴BC=CE,AC=CD,

∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,

∴∠ACN=∠DCM,

∵在△ACN和△DCM中,,

∴△ACN≌△DCM(AAS),

∴AN=DM,

∴△BDC的面積和△AEC的面積相等(等底等高的三角形的面積相等),

即S1=S1;(3)如圖,過點D作DF1∥BE,易求四邊形BEDF1是菱形,

所以BE=DF1,且BE、DF1上的高相等,

此時S△DCF1=S△BDE;

過點D作DF1⊥BD,

∵∠ABC=20°,F1D∥BE,

∴∠F1F1D=∠ABC=20°,

∵BF1=DF1,∠F1BD=∠ABC=30°,∠F1DB=90°,

∴∠F1DF1=∠ABC=20°,

∴△DF1F1是等邊三角形,

∴DF1=DF1,過點D作DG⊥BC于G,

∵BD=CD,∠ABC=20°,點D是角平分線上一點,

∴∠DBC=∠DCB=×20°=30°,BG=BC=,

∴BD=3∴∠CDF1=180°-∠BCD=180°-30°=150°,

∠CDF1=320°-1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論