安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷含解析_第1頁
安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷含解析_第2頁
安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷含解析_第3頁
安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷含解析_第4頁
安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省巢湖市春暉學校2023-2024學年中考數學仿真試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米處折斷,樹尖B恰好碰到地面,經測量AB=2m,則樹高為()米A. B. C.+1 D.32.如圖,點A,B在反比例函數y=1x(x>0)的圖象上,點C,D在反比例函數y=A.4 B.3 C.2 D.33.“保護水資源,節約用水”應成為每個公民的自覺行為.下表是某個小區隨機抽查到的10戶家庭的月用水情況,則下列關于這10戶家庭的月用水量說法錯誤的是()月用水量(噸)4569戶數(戶)3421A.中位數是5噸 B.眾數是5噸 C.極差是3噸 D.平均數是5.3噸4.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=05.據浙江省統計局發布的數據顯示,2017年末,全省常住人口為5657萬人數據“5657萬”用科學記數法表示為A. B. C. D.6.向某一容器中注水,注滿為止,表示注水量與水深的函數關系的圖象大致如圖所示,則該容器可能是()A. B.C. D.7.如圖,AB∥CD,FE⊥DB,垂足為E,∠1=60°,則∠2的度數是()A.60° B.50° C.40° D.30°8.將一副三角尺(在中,,,在中,,)如圖擺放,點為的中點,交于點,經過點,將繞點順時針方向旋轉(),交于點,交于點,則的值為()A. B. C. D.9.在學校演講比賽中,10名選手的成績折線統計圖如圖所示,則下列說法正確的是()A.最高分90 B.眾數是5 C.中位數是90 D.平均分為87.510.下列說法中,正確的是()A.不可能事件發生的概率為0B.隨機事件發生的概率為C.概率很小的事件不可能發生D.投擲一枚質地均勻的硬幣100次,正面朝上的次數一定為50次二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,a∥b,∠1=110°,∠3=40°,則∠2=_____°.12.同學們設計了一個重復拋擲的實驗:全班48人分為8個小組,每組拋擲同一型號的一枚瓶蓋300次,并記錄蓋面朝上的次數,下表是依次累計各小組的實驗結果.1組1~2組1~3組1~4組1~5組1~6組1~7組1~8組蓋面朝上次數16533548363280194911221276蓋面朝上頻率0.5500.5580.5370.5270.5340.5270.5340.532根據實驗,你認為這一型號的瓶蓋蓋面朝上的概率為____,理由是:____.13.如圖,函數y=(x<0)的圖像與直線y=-x交于A點,將線段OA繞O點順時針旋轉30°,交函數y=(x<0)的圖像于B點,得到線段OB,若線段AB=3-,則k=_______________________.14.已知:a(a+2)=1,則a2+=_____.15.已知正比例函數的圖像經過點M(-2,1)、Ax1,y1、Bx2,y16.已知關于X的一元二次方程有實數根,則m的取值范圍是____________________三、解答題(共8題,共72分)17.(8分)如圖,在平面直角坐標系中,直線y=x+2與x軸,y軸分別交于A,B兩點,點C(2,m)為直線y=x+2上一點,直線y=﹣x+b過點C.求m和b的值;直線y=﹣x+b與x軸交于點D,動點P從點D開始以每秒1個單位的速度向x軸負方向運動.設點P的運動時間為t秒.①若點P在線段DA上,且△ACP的面積為10,求t的值;②是否存在t的值,使△ACP為等腰三角形?若存在,直接寫出t的值;若不存在,請說明理由.18.(8分)為了提高學生書寫漢字的能力,增強保護漢子的意識,某校舉辦了首屆“漢字聽寫大賽”,學生經選拔后進入決賽,測試同時聽寫100個漢字,每正確聽寫出一個漢字得1分,本次決賽,學生成績為(分),且,將其按分數段分為五組,繪制出以下不完整表格:組別

成績(分)

頻數(人數)

頻率

2

0.04

10

0.2

14

b

a

0.32

8

0.16

請根據表格提供的信息,解答以下問題:(1)本次決賽共有名學生參加;(2)直接寫出表中a=,b=;(3)請補全下面相應的頻數分布直方圖;(4)若決賽成績不低于80分為優秀,則本次大賽的優秀率為.19.(8分)某商場將進價40元一個的某種商品按50元一個售出時,每月能賣出500個.商場想了兩個方案來增加利潤:方案一:提高價格,但這種商品每個售價漲價1元,銷售量就減少10個;方案二:售價不變,但發資料做廣告.已知當這種商品每月的廣告費用為m(千元)時,每月銷售量將是原銷售量的p倍,且p=.試通過計算,請你判斷商場為賺得更大的利潤應選擇哪種方案?請說明你判斷的理由!20.(8分)如圖,直角坐標系中,⊙M經過原點O(0,0),點A(,0)與點B(0,﹣1),點D在劣弧OA上,連接BD交x軸于點C,且∠COD=∠CBO.(1)請直接寫出⊙M的直徑,并求證BD平分∠ABO;(2)在線段BD的延長線上尋找一點E,使得直線AE恰好與⊙M相切,求此時點E的坐標.21.(8分)如圖,⊙O是△ABC的外接圓,FH是⊙O的切線,切點為F,FH∥BC,連結AF交BC于E,∠ABC的平分線BD交AF于D,連結BF.(1)證明:AF平分∠BAC;(2)證明:BF=FD;(3)若EF=4,DE=3,求AD的長.22.(10分)我們知道中,如果,,那么當時,的面積最大為6;(1)若四邊形中,,且,直接寫出滿足什么位置關系時四邊形面積最大?并直接寫出最大面積.(2)已知四邊形中,,求為多少時,四邊形面積最大?并求出最大面積是多少?23.(12分)已知關于的方程mx2+(2m-1)x+m-1=0(m≠0).求證:方程總有兩個不相等的實數根;若方程的兩個實數根都是整數,求整數的值.24.如圖,PB與⊙O相切于點B,過點B作OP的垂線BA,垂足為C,交⊙O于點A,連結PA,AO,AO的延長線交⊙O于點E,與PB的延長線交于點D.(1)求證:PA是⊙O的切線;(2)若tan∠BAD=,且OC=4,求BD的長.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】由題意可知,AC=1,AB=2,∠CAB=90°據勾股定理則BC=m;∴AC+BC=(1+)m.答:樹高為(1+)米.故選C.2、B【解析】

首先根據A,B兩點的橫坐標,求出A,B兩點的坐標,進而根據AC//BD//y軸,及反比例函數圖像上的點的坐標特點得出C,D兩點的坐標,從而得出AC,BD的長,根據三角形的面積公式表示出S△OAC,S△ABD的面積,再根據△OAC與△ABD的面積之和為32【詳解】把x=1代入y=1∴A(1,1),把x=2代入y=1x得:y=∴B(2,12∵AC//BD//y軸,∴C(1,K),D(2,k2∴AC=k-1,BD=k2-1∴S△OAC=12S△ABD=12(k2-又∵△OAC與△ABD的面積之和為32∴12(k-1)×1+12(k2-1故答案為B.【點睛】:此題考查了反比例函數系數k的幾何意義,以及反比例函數圖象上點的坐標特征,熟練掌握反比例函數k的幾何意義是解本題的關鍵.3、C【解析】

根據中位數、眾數、極差和平均數的概念,對選項一一分析,即可選擇正確答案.【詳解】解:A、中位數=(5+5)÷2=5(噸),正確,故選項錯誤;B、數據5噸出現4次,次數最多,所以5噸是眾數,正確,故選項錯誤;C、極差為9﹣4=5(噸),錯誤,故選項正確;D、平均數=(4×3+5×4+6×2+9×1)÷10=5.3,正確,故選項錯誤.故選:C.【點睛】此題主要考查了平均數、中位數、眾數和極差的概念.要掌握這些基本概念才能熟練解題.4、D【解析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.5、C【解析】

科學記數法的表示形式為的形式,其中,n為整數確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同當原數絕對值時,n是正數;當原數的絕對值時,n是負數.【詳解】解:5657萬用科學記數法表示為,

故選:C.【點睛】此題考查科學記數法的表示方法科學記數法的表示形式為的形式,其中,n為整數,表示時關鍵要正確確定a的值以及n的值.6、D【解析】

根據函數的圖象和所給出的圖形分別對每一項進行判斷即可.【詳解】由函數圖象知:隨高度h的增加,y也增加,但隨h變大,每單位高度的增加,注水量h的增加量變小,圖象上升趨勢變緩,其原因只能是水瓶平行于底面的截面的半徑由底到頂逐漸變小,故D項正確.故選:D.【點睛】本題主要考查函數模型及其應用.7、D【解析】

由EF⊥BD,∠1=60°,結合三角形內角和為180°即可求出∠D的度數,再由“兩直線平行,同位角相等”即可得出結論.【詳解】解:在△DEF中,∠1=60°,∠DEF=90°,

∴∠D=180°-∠DEF-∠1=30°.

∵AB∥CD,

∴∠2=∠D=30°.

故選D.【點睛】本題考查平行線的性質以及三角形內角和為180°,解題關鍵是根據平行線的性質,找出相等、互余或互補的角.8、C【解析】

先根據直角三角形斜邊上的中線性質得CD=AD=DB,則∠ACD=∠A=30°,∠BCD=∠B=60°,由于∠EDF=90°,可利用互余得∠CPD=60°,再根據旋轉的性質得∠PDM=∠CDN=α,于是可判斷△PDM∽△CDN,得到=,然后在Rt△PCD中利用正切的定義得到tan∠PCD=tan30°=,于是可得=.【詳解】∵點D為斜邊AB的中點,∴CD=AD=DB,∴∠ACD=∠A=30°,∠BCD=∠B=60°,∵∠EDF=90°,∴∠CPD=60°,∴∠MPD=∠NCD,∵△EDF繞點D順時針方向旋轉α(0°<α<60°),∴∠PDM=∠CDN=α,∴△PDM∽△CDN,∴=,在Rt△PCD中,∵tan∠PCD=tan30°=,∴=tan30°=.故選:C.【點睛】本題考查了旋轉的性質:對應點到旋轉中心的距離相等;對應點與旋轉中心所連線段的夾角等于旋轉角;旋轉前、后的圖形全等.也考查了相似三角形的判定與性質.9、C【解析】試題分析:根據折線統計圖可得:最高分為95,眾數為90;中位數90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.10、A【解析】試題分析:不可能事件發生的概率為0,故A正確;隨機事件發生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發生,故C錯誤;投擲一枚質地均勻的硬幣100次,正面向上的次數為50次是隨機事件,D錯誤;故選A.考點:隨機事件.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】試題解析:如圖,∵a∥b,∠3=40°,∴∠4=∠3=40°.∵∠1=∠2+∠4=110°,∴∠2=110°-∠4=110°-40°=1°.故答案為:1.12、0.532,在用頻率估計概率時,試驗次數越多越接近,所以取1﹣8組的頻率值.【解析】

根據用頻率估計概率解答即可.【詳解】∵在用頻率估計概率時,試驗次數越多越接近,所以取1﹣8組的頻率值,∴這一型號的瓶蓋蓋面朝上的概率為0.532,故答案為:0.532,在用頻率估計概率時,試驗次數越多越接近,所以取1﹣8組的頻率值.【點睛】本題考查了利用頻率估計概率的知識,解答此題關鍵是用頻率估計概率得到的是近似值,隨實驗次數的增多,值越來越精確.13、-3【解析】

作AC⊥x軸于C,BD⊥x軸于D,AE⊥BD于E點,設A點坐標為(3a,-a),則OC=-3a,AC=-a,利用勾股定理計算出OA=-2a,得到∠AOC=30°,再根據旋轉的性質得到OA=OB,∠BOD=60°,易證得Rt△OAC≌Rt△BOD,OD=AC=-a,BD=OC=-3a,于是有AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,即AE=BE,則△ABE為等腰直角三角形,利用等腰直角三角形的性質得到3-=(-3a+a),求出a=1,確定A點坐標為(3,-),然后把A(3,-)代入函數y=即可得到k的值.【詳解】作AC⊥x軸與C,BD⊥x軸于D,AE⊥BD于E點,如圖,點A在直線y=-x上,可設A點坐標為(3a,-a),在Rt△OAC中,OC=-3a,AC=-a,∴OA==-2a,∴∠AOC=30°,∵直線OA繞O點順時針旋轉30°得到OB,∴OA=OB,∠BOD=60°,∴∠OBD=30°,∴Rt△OAC≌Rt△BOD,∴OD=AC=-a,BD=OC=-3a,∵四邊形ACDE為矩形,∴AE=OC-OD=-3a+a,BE=BD-AC=-3a+a,∴AE=BE,∴△ABE為等腰直角三角形,∴AB=AE,即3-=(-3a+a),解得a=1,∴A點坐標為(3,-),而點A在函數y=的圖象上,∴k=3×(-)=-3.故答案為-3.【點睛】本題是反比例函數綜合題:點在反比例函數圖象上,則點的橫縱坐標滿足其解析式;利用勾股定理、旋轉的性質以及等腰直角三角形的性質進行線段的轉換與計算.14、3【解析】

先根據a(a+2)=1得出a2=1-2a,再把a2=1-2a代入a2+進行計算.【詳解】a(a+2)=1得出a2=1-2a,a2+1-2a+====3.【點睛】本題考查的是代數式求解,熟練掌握代入法是解題的關鍵.15、>【解析】分析:根據正比例函數的圖象經過點M(﹣1,1)可以求得該函數的解析式,然后根據正比例函數的性質即可解答本題.詳解:設該正比例函數的解析式為y=kx,則1=﹣1k,得:k=﹣0.5,∴y=﹣0.5x.∵正比例函數的圖象經過點A(x1,y1)、B(x1,y1),x1<x1,∴y1>y1.故答案為>.點睛:本題考查了正比例函數圖象上點的坐標特征,解答本題的關鍵是明確題意,利用正比例函數的性質解答.16、m≤3且m≠2【解析】試題解析:∵一元二次方程有實數根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.三、解答題(共8題,共72分)17、(1)4,5;(2)①7;②4或或或8.【解析】

分別令可得b和m的值;根據的面積公式列等式可得t的值;存在,分三種情況:當時,如圖1,當時,如圖2,當時,如圖3,分別求t的值即可.【詳解】把點代入直線中得:,點,直線過點C,,;由題意得:,中,當時,,,,中,當時,,,,,的面積為10,,,則t的值7秒;存在,分三種情況:當時,如圖1,過C作于E,,,即;當時,如圖2,,,;當時,如圖3,,,,,,,即;綜上,當秒或秒或秒或8秒時,為等腰三角形.【點睛】本題屬于一次函數綜合題,涉及的知識有:待定系數法求一次函數解析式,坐標與圖形性質,勾股定理,等腰三角形的判定,以及一次函數與坐標軸的交點,熟練掌握性質及定理是解本題的關鍵,并注意運用分類討論的思想解決問題.18、(1)50;(2)a=16,b=0.28;(3)答案見解析;(4)48%.【解析】試題分析:(1)根據第一組別的人數和百分比得出樣本容量;(2)根據樣本容量以及頻數、頻率之間的關系得出a和b的值,(3)根據a的值將圖形補全;(4)根據圖示可得:優秀的人為第四和第五組的人,將兩組的頻數相加乘以100%得出答案.試題解析:(1)2÷0.04=50(2)50×0.32=1614÷50=0.28(3)(4)(0.32+0.16)×100%=48%考點:頻數分布直方圖19、方案二能獲得更大的利潤;理由見解析【解析】

方案一:由利潤=(實際售價-進價)×銷售量,列出函數關系式,再用配方法求最大利潤;方案二:由利潤=(售價-進價)×500p-廣告費用,列出函數關系式,再用配方法求最大利潤.【詳解】解:設漲價x元,利潤為y元,則方案一:漲價x元時,該商品每一件利潤為:50+x?40,銷售量為:500?10x,∴,∵當x=20時,y最大=9000,∴方案一的最大利潤為9000元;方案二:該商品售價利潤為=(50?40)×500p,廣告費用為:1000m元,∴,∴方案二的最大利潤為10125元;∴選擇方案二能獲得更大的利潤.【點睛】本題考查二次函數的實際應用,根據題意,列出函數關系式,配方求出最大值.20、(1)詳見解析;(2)(,1).【解析】

(1)根據勾股定理可得AB的長,即⊙M的直徑,根據同弧所對的圓周角可得BD平分∠ABO;(2)作輔助構建切線AE,根據特殊的三角函數值可得∠OAB=30°,分別計算EF和AF的長,可得點E的坐標.【詳解】(1)∵點A(,0)與點B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直徑,∴⊙M的直徑為2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如圖,過點A作AE⊥AB于E,交BD的延長線于點E,過E作EF⊥OA于F,即AE是切線,∵在Rt△ACB中,tan∠OAB=,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB?tan30°=1×,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等邊三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴點E的坐標為(,1).【點睛】此題屬于圓的綜合題,考查了勾股定理、圓周角定理、等邊三角形的判定與性質以及三角函數等知識.注意準確作出輔助線是解此題的關鍵.21、【小題1】見解析【小題2】見解析【小題3】【解析】證明:(1)連接OF∴FH切·O于點F∴OF⊥FH…………1分∵BC||FH∴OF⊥BC…………2分∴BF="CF"…………3分∴∠BAF=∠CAF即AF平分∠BAC…4分(2)∵∠CAF=∠CBF又∠CAF=∠BAF∴∠CBF=∠BAF…………6分∵BD平分∠ABC∴∠ABD=∠CBD∴∠BAF+∠ABD=∠CBF+∠CBD即∠FBD=∠FDB…………7分∴BF="DF"…………8分(3)∵∠BFE=∠AFB∠FBE=∠FAB∴ΔBEF∽ΔABF…………9分∴即BF2=EF·AF……10分∵EF=4DE=3∴BF="DF"=4+3=7AF=AD+7即4(AD+7)=49解得AD=22、(1)當,時有最大值1;(2)當時,面積有最大值32.【解析】

(1)由題意當AD∥BC,BD⊥AD時,四邊形ABCD的面積最大,由此即可解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論