




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學(xué)年高三上數(shù)學(xué)期末模擬試卷注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若集合,則()A. B.C. D.2.已知函數(shù),若關(guān)于的方程有且只有一個實數(shù)根,則實數(shù)的取值范圍是()A. B.C. D.3.復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.一個幾何體的三視圖及尺寸如下圖所示,其中正視圖是直角三角形,側(cè)視圖是半圓,俯視圖是等腰三角形,該幾何體的表面積是()A.B.C.D.5.若兩個非零向量、滿足,且,則與夾角的余弦值為()A. B. C. D.6.的展開式中的常數(shù)項為()A.-60 B.240 C.-80 D.1807.已知函數(shù),,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.8.已知數(shù)列的通項公式是,則()A.0 B.55 C.66 D.789.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.10.已知i是虛數(shù)單位,則1+iiA.-12+32i11.函數(shù)的定義域為()A. B. C. D.12.設(shè)i為虛數(shù)單位,若復(fù)數(shù),則復(fù)數(shù)z等于()A. B. C. D.0二、填空題:本題共4小題,每小題5分,共20分。13.在的二項展開式中,只有第5項的二項式系數(shù)最大,則該二項展開式中的常數(shù)項等于_____.14.已知公差大于零的等差數(shù)列中,、、依次成等比數(shù)列,則的值是__________.15.設(shè)復(fù)數(shù)滿足,則_________.16.已知△ABC得三邊長成公比為2的等比數(shù)列,則其最大角的余弦值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)設(shè),若存在兩個極值點,,且,求證:;(2)設(shè),在不單調(diào),且恒成立,求的取值范圍.(為自然對數(shù)的底數(shù)).18.(12分)在中,a,b,c分別是角A,B,C的對邊,并且.(1)已知_______________,計算的面積;請①,②,③這三個條件中任選兩個,將問題(1)補充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計分.(2)求的最大值.19.(12分)已知()過點,且當(dāng)時,函數(shù)取得最大值1.(1)將函數(shù)的圖象向右平移個單位得到函數(shù),求函數(shù)的表達式;(2)在(1)的條件下,函數(shù),求在上的值域.20.(12分)在中,角、、所對的邊分別為、、,且.(1)求角的大小;(2)若,的面積為,求及的值.21.(12分)在中,設(shè)、、分別為角、、的對邊,記的面積為,且.(1)求角的大?。唬?)若,,求的值.22.(10分)在中,角的對邊分別為,且.(1)求角的大??;(2)已知外接圓半徑,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先確定集合中的元素,然后由交集定義求解.【詳解】,.故選:A.【點睛】本題考查求集合的交集運算,掌握交集定義是解題關(guān)鍵.2、B【解析】
利用換元法設(shè),則等價為有且只有一個實數(shù)根,分三種情況進行討論,結(jié)合函數(shù)的圖象,求出的取值范圍.【詳解】解:設(shè),則有且只有一個實數(shù)根.當(dāng)時,當(dāng)時,,由即,解得,結(jié)合圖象可知,此時當(dāng)時,得,則是唯一解,滿足題意;當(dāng)時,此時當(dāng)時,,此時函數(shù)有無數(shù)個零點,不符合題意;當(dāng)時,當(dāng)時,,此時最小值為,結(jié)合圖象可知,要使得關(guān)于的方程有且只有一個實數(shù)根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數(shù)方程根的個數(shù)的應(yīng)用.利用換元法,數(shù)形結(jié)合是解決本題的關(guān)鍵.3、B【解析】
設(shè),則,可得,即可得到,進而找到對應(yīng)的點所在象限.【詳解】設(shè),則,,,所以復(fù)數(shù)在復(fù)平面內(nèi)所對應(yīng)的點為,在第二象限.故選:B【點睛】本題考查復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點所在象限,考查復(fù)數(shù)的模,考查運算能力.4、D【解析】
由三視圖可知該幾何體的直觀圖是軸截面在水平面上的半個圓錐,表面積為,故選D.5、A【解析】
設(shè)平面向量與的夾角為,由已知條件得出,在等式兩邊平方,利用平面向量數(shù)量積的運算律可求得的值,即為所求.【詳解】設(shè)平面向量與的夾角為,,可得,在等式兩邊平方得,化簡得.故選:A.【點睛】本題考查利用平面向量的模求夾角的余弦值,考查平面向量數(shù)量積的運算性質(zhì)的應(yīng)用,考查計算能力,屬于中等題.6、D【解析】
求的展開式中的常數(shù)項,可轉(zhuǎn)化為求展開式中的常數(shù)項和項,再求和即可得出答案.【詳解】由題意,中常數(shù)項為,中項為,所以的展開式中的常數(shù)項為:.故選:D【點睛】本題主要考查二項式定理的應(yīng)用和二項式展開式的通項公式,考查學(xué)生計算能力,屬于基礎(chǔ)題.7、C【解析】
對任意的總有恒成立,因為,對恒成立,可得,令,可得,結(jié)合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當(dāng),當(dāng),,故令,得當(dāng)時,當(dāng),當(dāng)時,故選:C.【點睛】本題主要考查了根據(jù)不等式恒成立求最值問題,解題關(guān)鍵是掌握不等式恒成立的解法和導(dǎo)數(shù)求函數(shù)單調(diào)性的解法,考查了分析能力和計算能力,屬于難題.8、D【解析】
先分為奇數(shù)和偶數(shù)兩種情況計算出的值,可進一步得到數(shù)列的通項公式,然后代入轉(zhuǎn)化計算,再根據(jù)等差數(shù)列求和公式計算出結(jié)果.【詳解】解:由題意得,當(dāng)為奇數(shù)時,,當(dāng)為偶數(shù)時,所以當(dāng)為奇數(shù)時,;當(dāng)為偶數(shù)時,,所以故選:D【點睛】此題考查數(shù)列與三角函數(shù)的綜合問題,以及數(shù)列求和,考查了正弦函數(shù)的性質(zhì)應(yīng)用,等差數(shù)列的求和公式,屬于中檔題.9、D【解析】
利用等比中項性質(zhì)可得等差數(shù)列的首項,進而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時,取到最小值.【詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當(dāng)或時同時取到最值.10、D【解析】
利用復(fù)數(shù)的運算法則即可化簡得出結(jié)果【詳解】1+i故選D【點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,屬于基礎(chǔ)題。11、C【解析】
函數(shù)的定義域應(yīng)滿足故選C.12、B【解析】
根據(jù)復(fù)數(shù)除法的運算法則,即可求解.【詳解】.故選:B.【點睛】本題考查復(fù)數(shù)的代數(shù)運算,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
由題意可得,再利用二項展開式的通項公式,求得二項展開式常數(shù)項的值.【詳解】的二項展開式的中,只有第5項的二項式系數(shù)最大,,通項公式為,令,求得,可得二項展開式常數(shù)項等于,故答案為1.【點睛】本題主要考查二項式定理的應(yīng)用,二項展開式的通項公式,二項式系數(shù)的性質(zhì),屬于基礎(chǔ)題.14、【解析】
利用等差數(shù)列的通項公式以及等比中項的性質(zhì),化簡求出公差與的關(guān)系,然后轉(zhuǎn)化求解的值.【詳解】設(shè)等差數(shù)列的公差為,則,由于、、依次成等比數(shù)列,則,即,,解得,因此,.故答案為:.【點睛】本題考查等差數(shù)列通項公式以及等比中項的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.15、.【解析】
利用復(fù)數(shù)的運算法則首先可得出,再根據(jù)共軛復(fù)數(shù)的概念可得結(jié)果.【詳解】∵復(fù)數(shù)滿足,∴,∴,故而可得,故答案為.【點睛】本題考查了復(fù)數(shù)的運算法則,共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.16、-【解析】試題分析:根據(jù)題意設(shè)三角形的三邊長分別設(shè)為為a,2a,2a,∵2a>2a>a,∴2a所對的角為最大角,設(shè)為θ,則根據(jù)余弦定理得考點:余弦定理及等比數(shù)列的定義.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)先求出,又由可判斷出在上單調(diào)遞減,故,令,記,利用導(dǎo)數(shù)求出的最小值即可;(2)由在上不單調(diào)轉(zhuǎn)化為在上有解,可得,令,分類討論求的最大值,再求解即可.【詳解】(1)已知,,由可得,又由,知在上單調(diào)遞減,令,記,則在上單調(diào)遞增;,在上單調(diào)遞增;,(2),,在上不單調(diào),在上有正有負,在上有解,,,恒成立,記,則,記,,在上單調(diào)增,在上單調(diào)減.于是知(i)當(dāng)即時,恒成立,在上單調(diào)增,,,.(ii)當(dāng)時,,故不滿足題意.綜上所述,【點睛】本題主要考查了導(dǎo)數(shù)的綜合應(yīng)用,考查了分類討論,轉(zhuǎn)化與化歸的思想,考查了學(xué)生的運算求解能力.18、(1)見解析(2)1【解析】
(1)選②,③.可得,結(jié)合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當(dāng)時,有最大值1.【點睛】本題考查了正余弦定理,三角三角恒等變形,考查了計算能力,屬于中檔題.19、(1);(2).【解析】
試題分析:(1)由題意可得函數(shù)f(x)的解析式為,則.(2)整理函數(shù)h(x)的解析式可得:,結(jié)合函數(shù)的定義域可得函數(shù)的值域為.試題解析:(1)由函數(shù)取得最大值1,可得,函數(shù)過得,,∵,∴,.(2),,,值域為.20、(1)(2);【解析】
(1)由代入中計算即可;(2)由余弦定理可得,所以,由,變形即可得到答案.【詳解】(1)因為,可得:,∴,或(舍),∵,∴.(2)由余弦定理,得所以,故,又,所以,所以.【點睛】本題考查二倍角公式以及正余弦定理解三角形,考查學(xué)生的運算求解能力,是一道容易題.21、(1);(2)【解析】
(1)由三角形面積公式,平面向量數(shù)量積的運算可得,結(jié)合范圍,可求,進而可求的值.(2)利用同角三角函數(shù)基本關(guān)系式可求,利用兩角和的正弦函數(shù)公式可求的值,由正弦定理可求得的值.【詳解】解:(1)由,得,因為,所以,可得:.(2)中,,所以.所以:,由正弦定理,得,解得,【點睛】本題主要考查了三角形面積公式,平面向量數(shù)量積的運算,同角三角函數(shù)基本關(guān)系式,兩角和的正弦函數(shù)公式,正弦定理在解三角形中的應(yīng)用,考查了計算能
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 廈門大學(xué)《建筑功能材料A》2023-2024學(xué)年第二學(xué)期期末試卷
- 五邑大學(xué)《生物檢測技術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 重慶對外經(jīng)貿(mào)學(xué)院《消費者行為學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 環(huán)保項目環(huán)境影響識別與評價考核試卷
- 碳素材料在核燃料處理中的應(yīng)用考核試卷
- 燈具配件物流與倉儲管理考核試卷
- 石油開采業(yè)的行業(yè)協(xié)會與組織合作考核試卷
- 玉米加工技術(shù)創(chuàng)新與知識產(chǎn)權(quán)保護考核試卷
- 智能驅(qū)蚊手環(huán)驅(qū)蚊效果考核試卷
- 林業(yè)副產(chǎn)品在化學(xué)品制造中的應(yīng)用考核試卷
- 鐵路網(wǎng)絡(luò)安全知識培訓(xùn)
- 煤礦事故案例警示
- 2025年南通師范高等??茖W(xué)校高職單招(數(shù)學(xué))歷年真題考點含答案解析
- 第10課 金與南宋對峙 教案2024-2025學(xué)年七年級歷史下冊新課標
- 2025年自來水筆試題及答案
- 2025年鄭州鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫及參考答案1套
- 樹木移植的施工方案
- 四川大學(xué)自主招生個人陳述語言風(fēng)格范文
- 5.2《稻》教案-【中職專用】高二語文同步教學(xué)(高教版2023·拓展模塊下冊)
- 人工智能在智能安防中的應(yīng)用
- ORP-數(shù)值對反滲透裝置的影響
評論
0/150
提交評論