




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代典籍《周易》用“卦”描述萬物的變化.每一“重卦”由從下到上排列的6個爻組成,爻分為陽爻“——”和陰爻“——”.如圖就是一重卦.在所有重卦中隨機取一重卦,則該重卦至少有2個陽爻的概率是()A. B. C. D.2.已知,,則()A. B. C. D.3.已知,則()A. B. C. D.4.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.5.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③6.設α,β為兩個平面,則α∥β的充要條件是A.α內有無數條直線與β平行B.α內有兩條相交直線與β平行C.α,β平行于同一條直線D.α,β垂直于同一平面7.設,,,則、、的大小關系為()A. B. C. D.8.函數f(x)=sin(wx+)(w>0,<)的最小正周期是π,若將該函數的圖象向右平移個單位后得到的函數圖象關于直線x=對稱,則函數f(x)的解析式為()A.f(x)=sin(2x+) B.f(x)=sin(2x-)C.f(x)=sin(2x+) D.f(x)=sin(2x-)9.已知拋物線和點,直線與拋物線交于不同兩點,,直線與拋物線交于另一點.給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準線相切.其中,所有正確判斷的序號是()A.①②③ B.①② C.①③ D.②③10.記遞增數列的前項和為.若,,且對中的任意兩項與(),其和,或其積,或其商仍是該數列中的項,則()A. B.C. D.11.已知拋物線C:,過焦點F的直線l與拋物線C交于A,B兩點(A在x軸上方),且滿足,則直線l的斜率為()A.1 B.C.2 D.312.已知函數.若存在實數,且,使得,則實數a的取值范圍為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在的展開式中,的系數為______用數字作答14.已知內角的對邊分別為外接圓的面積為,則的面積為_________.15.若變量,滿足約束條件,則的最大值為__________.16.設為拋物線的焦點,為上互相不重合的三點,且、、成等差數列,若線段的垂直平分線與軸交于,則的坐標為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知函數.(1)當時,求證:;(2)若函數,求證:函數存在極小值.18.(12分)已知正實數滿足.(1)求的最小值.(2)證明:19.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.20.(12分)某市環保部門對該市市民進行了一次垃圾分類知識的網絡問卷調查,每一位市民僅有一次參加機會,通過隨機抽樣,得到參加問卷調查的人的得分(滿分:分)數據,統計結果如下表所示.組別頻數(1)已知此次問卷調查的得分服從正態分布,近似為這人得分的平均值(同一組中的數據用該組區間的中點值為代表),請利用正態分布的知識求;(2)在(1)的條件下,環保部門為此次參加問卷調查的市民制定如下獎勵方案.(ⅰ)得分不低于的可以獲贈次隨機話費,得分低于的可以獲贈次隨機話費;(ⅱ)每次贈送的隨機話費和相應的概率如下表.贈送的隨機話費/元概率現市民甲要參加此次問卷調查,記為該市民參加問卷調查獲贈的話費,求的分布列及數學期望.附:,若,則,,.21.(12分)某市為了鼓勵市民節約用電,實行“階梯式”電價,將該市每戶居民的月用電量劃分為三檔,月用電量不超過度的部分按元/度收費,超過度但不超過度的部分按元/度收費,超過度的部分按元/度收費.(I)求某戶居民用電費用(單位:元)關于月用電量(單位:度)的函數解析式;(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份戶居民每戶的用電量,統計分析后得到如圖所示的頻率分布直方圖,若這戶居民中,今年1月份用電費用不超過元的占,求,的值;(Ⅲ)在滿足(Ⅱ)的條件下,若以這戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數據用該組區間的中點代替,記為該居民用戶1月份的用電費用,求的分布列和數學期望.22.(10分)已知拋物線,過點的直線交拋物線于兩點,坐標原點為,.(1)求拋物線的方程;(2)當以為直徑的圓與軸相切時,求直線的方程.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用組合的方法求所求的事件的對立事件,即該重卦沒有陽爻或只有1個陽爻的概率,再根據兩對立事件的概率和為1求解即可.【詳解】設“該重卦至少有2個陽爻”為事件.所有“重卦”共有種;“該重卦至少有2個陽爻”的對立事件是“該重卦沒有陽爻或只有1個陽爻”,其中,沒有陽爻(即6個全部是陰爻)的情況有1種,只有1個陽爻的情況有種,故,所以該重卦至少有2個陽爻的概率是.故選:C【點睛】本題主要考查了對立事件概率和為1的方法求解事件概率的方法.屬于基礎題.2、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.3、D【解析】
根據指數函數的單調性,即當底數大于1時單調遞增,當底數大于零小于1時單調遞減,對選項逐一驗證即可得到正確答案.【詳解】因為,所以,所以是減函數,又因為,所以,,所以,,所以A,B兩項均錯;又,所以,所以C錯;對于D,,所以,故選D.【點睛】這個題目考查的是應用不等式的性質和指對函數的單調性比較大小,兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質得到大小關系,有時可以代入一些特殊的數據得到具體值,進而得到大小關系.4、C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.5、A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.6、B【解析】
本題考查了空間兩個平面的判定與性質及充要條件,滲透直觀想象、邏輯推理素養,利用面面平行的判定定理與性質定理即可作出判斷.【詳解】由面面平行的判定定理知:內兩條相交直線都與平行是的充分條件,由面面平行性質定理知,若,則內任意一條直線都與平行,所以內兩條相交直線都與平行是的必要條件,故選B.【點睛】面面平行的判定問題要緊扣面面平行判定定理,最容易犯的錯誤為定理記不住,憑主觀臆斷,如:“若,則”此類的錯誤.7、D【解析】
因為,,所以且在上單調遞減,且所以,所以,又因為,,所以,所以.故選:D.【點睛】本題考查利用指對數函數的單調性比較指對數的大小,難度一般.除了可以直接利用單調性比較大小,還可以根據中間值“”比較大小.8、D【解析】
由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.【詳解】分析:由函數的周期求得,再由平移后的函數圖像關于直線對稱,得到,由此求得滿足條件的的值,即可求得答案.詳解:因為函數的最小正周期是,所以,解得,所以,將該函數的圖像向右平移個單位后,得到圖像所對應的函數解析式為,由此函數圖像關于直線對稱,得:,即,取,得,滿足,所以函數的解析式為,故選D.【點睛】本題主要考查了三角函數的圖象變換,以及函數的解析式的求解,其中解答中根據三角函數的圖象變換得到,再根據三角函數的性質求解是解答的關鍵,著重考查了推理與運算能力.9、B【解析】
由題意,可設直線的方程為,利用韋達定理判斷第一個結論;將代入拋物線的方程可得,,從而,,進而判斷第二個結論;設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,進而判斷第三個結論.【詳解】解:由題意,可設直線的方程為,代入拋物線的方程,有.設點,的坐標分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據拋物線的對稱性可知,,兩點關于軸對稱,所以直線軸.所以②正確.如圖,設為拋物線的焦點,以線段為直徑的圓為,則圓心為線段的中點.設,到準線的距離分別為,,的半徑為,點到準線的距離為,顯然,,三點不共線,則.所以③不正確.故選:B.【點睛】本題主要考查拋物線的定義與幾何性質、直線與拋物線的位置關系等基礎知識,考查運算求解能力、推理論證能力和創新意識,考查數形結合思想、化歸與轉化思想,屬于難題.10、D【解析】
由題意可得,從而得到,再由就可以得出其它各項的值,進而判斷出的范圍.【詳解】解:,或其積,或其商仍是該數列中的項,或者或者是該數列中的項,又數列是遞增數列,,,,只有是該數列中的項,同理可以得到,,,也是該數列中的項,且有,,或(舍,,根據,,,同理易得,,,,,,,故選:D.【點睛】本題考查數列的新定義的理解和運用,以及運算能力和推理能力,屬于中檔題.11、B【解析】
設直線的方程為代入拋物線方程,利用韋達定理可得,,由可知所以可得代入化簡求得參數,即可求得結果.【詳解】設,(,).易知直線l的斜率存在且不為0,設為,則直線l的方程為.與拋物線方程聯立得,所以,.因為,所以,得,所以,即,,所以.故選:B.【點睛】本題考查直線與拋物線的位置關系,考查韋達定理及向量的坐標之間的關系,考查計算能力,屬于中檔題.12、D【解析】
首先對函數求導,利用導數的符號分析函數的單調性和函數的極值,根據題意,列出參數所滿足的不等關系,求得結果.【詳解】,令,得,.其單調性及極值情況如下:x0+0_0+極大值極小值若存在,使得,則(如圖1)或(如圖2).(圖1)(圖2)于是可得,故選:D.【點睛】該題考查的是有關根據函數值的關系求參數的取值范圍的問題,涉及到的知識點有利用導數研究函數的單調性與極值,畫出圖象數形結合,屬于較難題目.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】
利用二項展開式的通項公式求出展開式的通項,令,求出展開式中的系數.【詳解】二項展開式的通項為令得的系數為故答案為1.【點睛】利用二項展開式的通項公式是解決二項展開式的特定項問題的工具.14、【解析】
由外接圓面積,求出外接圓半徑,然后由正弦定理可求得三角形的內角,從而有,于是可得三角形邊長,可得面積.【詳解】設外接圓半徑為,則,由正弦定理,得,∴,,.故答案為:.【點睛】本題考查正弦定理,利用正弦定理求出三角形的內角,然后可得邊長,從而得面積,掌握正弦定理是解題關鍵.15、【解析】
根據約束條件可以畫出可行域,從而將問題轉化為直線在軸截距最大的問題的求解,通過數形結合的方式可確定過時,取最大值,代入可求得結果.【詳解】由約束條件可得可行域如下圖陰影部分所示:將化為,則最大時,直線在軸截距最大;由直線平移可知,當過時,在軸截距最大,由得:,.故答案為:.【點睛】本題考查線性規劃中最值問題的求解,關鍵是能夠將問題轉化為直線在軸截距的最值的求解問題,通過數形結合的方式可求得結果.16、或【解析】
設出三點的坐標,結合等差數列的性質、線段垂直平分線的性質、拋物線的定義進行求解即可.【詳解】拋物線的準線方程為:,設,由拋物線的定義可知:,,,因為、、成等差數列,所以有,所以,因為線段的垂直平分線與軸交于,所以,因此有,化簡整理得:或.若,由可知;,這與已知矛盾,故舍去;若,所以有,因此.故答案為:或【點睛】本題考查了拋物線的定義的應用,考查了等差數列的性質,考查了數學運算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)證明見解析(2)證明見解析【解析】
(1)求導得,由,且,得到,再利用函數在上單調遞減論證.(2)根據題意,求導,令,易知;,易知當時,,;當時,函數單調遞增,而,又,由零點存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因為,且,故,故函數在上單調遞減,故.(2)依題意,,令,則;而,可知當時,,故函數在上單調遞增,故當時,;當時,函數單調遞增,而,又,故,使得,故,使得,即函數單調遞增,即單調遞增;故當時,,故函數在上單調遞減,在上單調遞增,故當時,函數有極小值.【點睛】本題考查利用導數研究函數的性質,還考查推理論證能力以及函數與方程思想,屬于難題.18、(1);(2)見解析【解析】
(1)利用乘“1”法,結合基本不等式求得結果.(2)直接利用基本不等式及乘“1”法,證明即可.【詳解】(1)因為,所以因為,所以(當且僅當,即時等號成立),所以(2)證明:因為,所以故(當且僅當時,等號成立)【點睛】本題考查了基本不等式的應用,考查了乘“1”法的技巧,考查了推理論證能力,屬于中檔題.19、(1)見解析;(2)【解析】
(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據二面角的向量計算公式可求得其值.【詳解】(1)如圖,過點作交于,連接,設,連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標系,則,,,,,,,設平面的一個法向量為,則,,令,得,設平面的一個法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點睛】本題考查空間的面面垂直關系的證明,二面角的計算,在證明垂直關系時,注意運用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對角線互相垂直,屬于基礎題.20、(1);(2)見解析.【解析】
(1)根據題中所給的統計表,利用公式計算出平均數的值,再利用數據之間的關系將、表示為,,利用題中所給數據,以及正態分布的概率密度曲線的對稱性,求出對應的概率;(2)根據題意,高于平均數和低于平均數的概率各為,再結合得元、元的概率,分析得出話費的可能數據都有哪些,再利用公式求得對應的概率,進而得出分布列,之后利用離散型隨機變量的分布列求出其數學期望.【詳解】(1)由題意可得,易知,,,;(2)根據題意,可得出隨機變量的可能取值有、、、元,,,,.所以,隨機變量的分布列如下表所示:所以,隨機變量的數學期望為.【點睛】本題考查概率的計算,涉及到平均數的求法、正態分布概率的計算以及離散型隨機變量分布列及其數學期望,在解題時要弄清楚隨機變量所滿足的分布列類型,結合相應公式計算對應事件的概率,考查計算能力,屬于中等題.21、(1);(2),;(3)見解析.【解析】試題分析:(1)根據題意分段表示出函數解析式;(2)將代入(1)中函數解析式可得,即,根據頻率分布直方圖可分別得到關于的方程,即可得;(3)取每
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 七下政治考試試卷及答案
- 七上初中考試試卷及答案
- 全國職業院校教師教學能力比賽模板-藍色優雅
- 原油基礎知識培訓課件
- 公司部門培訓新人計劃
- 2024年秋新冀教版一年級上冊數學 2.3 玩泥巴 教學課件
- 園區設施檢修方案范本
- 護理人際關系的溝通技巧
- 2024-2025學年高中生物1.3.4體液調節在維持穩態中的作用課后作業含解析中圖版必修3
- 急性左心衰竭的護理查房
- 國防教育和兵役法
- 品牌管理塑造、傳播與維護課件 第7章 品牌傳播管理
- 2025屆遼寧省名校聯盟高三一模地理試題(原卷版+解析版)
- SF-36生活質量調查表(SF-36-含評分細則)
- 作文紙(網格600字A4)
- 《春秋三傳導讀》課件
- 教師情緒和壓力疏導課件
- 麻醉科進修匯報課件
- 中小學生心理健康教育主題班會PPT教學課件
- ISO-IEC 27002-2022中文版完整詳細
- 年產5萬噸電石爐窯節能改造項目環境影響后評價報告
評論
0/150
提交評論