




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黑龍江省哈爾濱市49中學初中數學畢業考試模擬沖刺卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.cos30°=()A. B. C. D.2.如圖所示,在方格紙上建立的平面直角坐標系中,將△ABC繞點O按順時針方向旋轉90°,得到△A′B′O,則點A′的坐標為()A.(3,1) B.(3,2) C.(2,3) D.(1,3)3.學完分式運算后,老師出了一道題“計算:”.小明的做法:原式;小亮的做法:原式;小芳的做法:原式.其中正確的是()A.小明 B.小亮 C.小芳 D.沒有正確的4.若分式有意義,則x的取值范圍是()A.x>3 B.x<3 C.x≠3 D.x=35.如圖,點O為平面直角坐標系的原點,點A在x軸上,△OAB是邊長為4的等邊三角形,以O為旋轉中心,將△OAB按順時針方向旋轉60°,得到△OA′B′,那么點A′的坐標為()A.(2,2) B.(﹣2,4) C.(﹣2,2) D.(﹣2,2)6.據國家統計局2018年1月18日公布,2017年我國GDP總量為827122億元,首次登上80萬億元的門檻,數據827122億元用科學記數法表示為()A.8.27122×1012 B.8.27122×1013 C.0.827122×1014 D.8.27122×10147.若,則x-y的正確結果是()A.-1 B.1 C.-5 D.58.已知一元二次方程ax2+ax﹣4=0有一個根是﹣2,則a值是()A.﹣2 B. C.2 D.49.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.10.若α,β是一元二次方程3x2+2x-9=0的兩根,則的值是(
).A. B.- C.- D.11.如圖,已知直線AB、CD被直線AC所截,AB∥CD,E是平面內任意一點(點E不在直線AB、CD、AC上),設∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度數可能是()A.①②③ B.①②④ C.①③④ D.①②③④12.一元二次方程x2﹣3x+1=0的根的情況()A.有兩個相等的實數根 B.有兩個不相等的實數根C.沒有實數根 D.以上答案都不對二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在平面直角坐標系中,智多星做走棋的游戲,其走法是:棋子從原點出發,第1步向上走1個單位,第2步向上走2個單位,第3步向右走1個單位,第4步向上走1個單位……依此類推,第n步的走法是:當n被3除,余數為2時,則向上走2個單位;當走完第2018步時,棋子所處位置的坐標是_____14.已知一個圓錐體的底面半徑為2,母線長為4,則它的側面展開圖面積是___.(結果保留π)15.如圖,在△ABC中,BE平分∠ABC,DE∥BC,如果DE=2AD,AE=3,那么EC=_____.16.如圖,點A1的坐標為(2,0),過點A1作x軸的垂線交直線l:y=x于點B1,以原點O為圓心,OB1的長為半徑畫弧交x軸正半軸于點A2;再過點A2作x軸的垂線交直線l于點B2,以原點O為圓心,以OB2的長為半徑畫弧交x軸正半軸于點A3;….按此作法進行下去,則的長是_____.17.A.如果一個正多邊形的一個外角是45°,那么這個正多邊形對角線的條數一共有_____條.B.用計算器計算:?tan63°27′≈_____(精確到0.01).18.如圖,在平面直角坐標系中,點A(0,6),點B在x軸的負半軸上,將線段AB繞點A逆時針旋轉90°至AB',點M是線段AB'的中點,若反比例函數y=(k≠0)的圖象恰好經過點B'、M,則k=_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖拋物線y=ax2+bx,過點A(4,0)和點B(6,2),四邊形OCBA是平行四邊形,點M(t,0)為x軸正半軸上的點,點N為射線AB上的點,且AN=OM,點D為拋物線的頂點.(1)求拋物線的解析式,并直接寫出點D的坐標;(2)當△AMN的周長最小時,求t的值;(3)如圖②,過點M作ME⊥x軸,交拋物線y=ax2+bx于點E,連接EM,AE,當△AME與△DOC相似時.請直接寫出所有符合條件的點M坐標.20.(6分)隨著社會的發展,通過微信朋友圈發布自己每天行走的步數已經成為一種時尚.“健身達人”小陳為了了解他的好友的運動情況.隨機抽取了部分好友進行調查,把他們6月1日那天行走的情況分為四個類別:A(0~5000步)(說明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),統計結果如圖所示:請依據統計結果回答下列問題:本次調查中,一共調查了位好友.已知A類好友人數是D類好友人數的5倍.①請補全條形圖;②扇形圖中,“A”對應扇形的圓心角為度.③若小陳微信朋友圈共有好友150人,請根據調查數據估計大約有多少位好友6月1日這天行走的步數超過10000步?21.(6分)如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2的⊙C分別交AC,BC于點D、E,得到DE弧.(1)求證:AB為⊙C的切線.(2)求圖中陰影部分的面積.22.(8分)如圖,AB∥CD,E、F分別為AB、CD上的點,且EC∥BF,連接AD,分別與EC、BF相交與點G、H,若AB=CD,求證:AG=DH.23.(8分)如圖,在?ABCD中,AE⊥BC交邊BC于點E,點F為邊CD上一點,且DF=BE.過點F作FG⊥CD,交邊AD于點G.求證:DG=DC.24.(10分)如圖,一次函數y1=﹣x﹣1的圖象與x軸交于點A,與y軸交于點B,與反比例函數圖象的一個交點為M(﹣2,m).(1)求反比例函數的解析式;(2)求點B到直線OM的距離.25.(10分)在正方形ABCD中,M是BC邊上一點,且點M不與B、C重合,點P在射線AM上,將線段AP繞點A順時針旋轉90°得到線段AQ,連接BP,DQ.(1)依題意補全圖1;(2)①連接DP,若點P,Q,D恰好在同一條直線上,求證:DP2+DQ2=2AB2;②若點P,Q,C恰好在同一條直線上,則BP與AB的數量關系為:.26.(12分)已知:如圖,□ABCD中,BD是對角線,AE⊥BD于E,CF⊥BD于F.求證:BE=DF.27.(12分)先化簡,再求值:(1+)÷,其中x=+1.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】
直接根據特殊角的銳角三角函數值求解即可.【詳解】故選C.【點睛】考點:特殊角的銳角三角函數點評:本題屬于基礎應用題,只需學生熟練掌握特殊角的銳角三角函數值,即可完成.2、D【解析】
解決本題抓住旋轉的三要素:旋轉中心O,旋轉方向順時針,旋轉角度90°,通過畫圖得A′.【詳解】由圖知A點的坐標為(-3,1),根據旋轉中心O,旋轉方向順時針,旋轉角度90°,畫圖,從而得A′點坐標為(1,3).故選D.3、C【解析】試題解析:=====1.所以正確的應是小芳.故選C.4、C【解析】
試題分析:∵分式有意義,∴x﹣3≠0,∴x≠3;故選C.考點:分式有意義的條件.5、D【解析】分析:作BC⊥x軸于C,如圖,根據等邊三角形的性質得則易得A點坐標和O點坐標,再利用勾股定理計算出然后根據第二象限點的坐標特征可寫出B點坐標;由旋轉的性質得則點A′與點B重合,于是可得點A′的坐標.詳解:作BC⊥x軸于C,如圖,∵△OAB是邊長為4的等邊三角形∴∴A點坐標為(?4,0),O點坐標為(0,0),在Rt△BOC中,∴B點坐標為∵△OAB按順時針方向旋轉,得到△OA′B′,∴∴點A′與點B重合,即點A′的坐標為故選D.點睛:考查圖形的旋轉,等邊三角形的性質.求解時,注意等邊三角形三線合一的性質.6、B【解析】
由科學記數法的定義可得答案.【詳解】解:827122億即82712200000000,用科學記數法表示為8.27122×1013,故選B.【點睛】科學記數法表示數的標準形式為(<10且n為整數).7、A【解析】由題意,得
x-2=0,1-y=0,
解得x=2,y=1.
x-y=2-1=-1,
故選:A.8、C【解析】分析:將x=-2代入方程即可求出a的值.詳解:將x=-2代入可得:4a-2a-4=0,解得:a=2,故選C.點睛:本題主要考查的是解一元一次方程,屬于基礎題型.解方程的一般方法的掌握是解題的關鍵.9、B【解析】根據折疊前后對應角相等可知.
解:設∠ABE=x,
根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.10、C【解析】分析:根據根與系數的關系可得出α+β=-、αβ=-3,將其代入=中即可求出結論.詳解:∵α、β是一元二次方程3x2+2x-9=0的兩根,∴α+β=-,αβ=-3,∴===.故選C.點睛:本題考查了根與系數的關系,牢記兩根之和等于-、兩根之積等于是解題的關鍵.11、D【解析】
根據E點有4中情況,分四種情況討論分別畫出圖形,根據平行線的性質與三角形外角定理求解.【詳解】E點有4中情況,分四種情況討論如下:由AB∥CD,可得∠AOC=∠DCE1=β∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β-α過點E2作AB的平行線,由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β∴∠AE2C=α+β由AB∥CD,可得∠BOE3=∠DCE3=β∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α-β由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°-α-β∴∠AEC的度數可能是①α+β,②α﹣β,③β-α,④360°﹣α﹣β,故選D.【點睛】此題主要考查平行線的性質與外角定理,解題的關鍵是根據題意分情況討論.12、B【解析】
首先確定a=1,b=-3,c=1,然后求出△=b2-4ac的值,進而作出判斷.【詳解】∵a=1,b=-3,c=1,∴△=(-3)2-4×1×1=5>0,∴一元二次方程x2-3x+1=0兩個不相等的實數根;故選B.【點睛】此題考查了根的判別式,一元二次方程根的情況與判別式△的關系:(1)△>0?方程有兩個不相等的實數根;(2)△=0?方程有兩個相等的實數;(3)△<0?方程沒有實數根.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(672,2019)【解析】分析:按照題目給定的規則,找到周期,由題意可得每三步是一個循環,所以只需要計算2018被3除,就可以得到棋子的位置.詳解:解:由題意得,每3步為一個循環組依次循環,且一個循環組內向右1個單位,向上3個單位,∵2018÷3=672…2,∴走完第2018步,為第673個循環組的第2步,所處位置的橫坐標為672,縱坐標為672×3+3=2019,∴棋子所處位置的坐標是(672,2019).故答案為:(672,2019).點睛:周期問題解決問題的核心是要找到最小正周期,然后把給定的數(一般是一個很大的數)除以最小正周期,余數是幾,就是第幾步,特別余數是1,就是第一步,余數是0,就是最后一步.14、8π【解析】
根據圓錐的側面積=底面周長×母線長÷2公式即可求出.【詳解】∵圓錐體的底面半徑為2,∴底面周長為2πr=4π,∴圓錐的側面積=4π×4÷2=8π.故答案為:8π.【點睛】靈活運用圓的周長公式和扇形面積公式.15、1.【解析】
由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行線分線段成比例定理,即可求得答案.【詳解】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=1.故答案為:1.【點睛】此題考查了平行線分線段成比例定理以及等腰三角形的判定與性質.注意掌握線段的對應關系是解此題的關鍵.16、【解析】【分析】先根據一次函數方程式求出B1點的坐標,再根據B1點的坐標求出A2點的坐標,得出B2的坐標,以此類推總結規律便可求出點A2019的坐標,再根據弧長公式計算即可求解,.【詳解】直線y=x,點A1坐標為(2,0),過點A1作x軸的垂線交直線于點B1可知B1點的坐標為(2,2),以原O為圓心,OB1長為半徑畫弧x軸于點A2,OA2=OB1,OA2==4,點A2的坐標為(4,0),這種方法可求得B2的坐標為(4,4),故點A3的坐標為(8,0),B3(8,8)以此類推便可求出點A2019的坐標為(22019,0),則的長是,故答案為:.【點睛】本題主要考查了一次函數圖象上點的坐標特征,弧長的計算,解題的關鍵找出點的坐標的變化規律、運用數形結合思想進行解題.17、205.1【解析】
A、先根據多邊形外角和為360°且各外角相等求得邊數,再根據多邊形對角線條數的計算公式計算可得;B、利用計算器計算可得.【詳解】A、根據題意,此正多邊形的邊數為360°÷45°=8,則這個正多邊形對角線的條數一共有=20,故答案為20;B、?tan63°27′≈2.646×2.001≈5.1,故答案為5.1.【點睛】本題主要考查計算器-三角函數,解題的關鍵是掌握多邊形的內角與外角、對角線計算公式及計算器的使用.18、12【解析】
根據題意可以求得點B'的橫坐標,然后根據反比例函數y=(k≠0)的圖象恰好經過點B'、M,從而可以求得k的值.【詳解】解:作B′C⊥y軸于點C,如圖所示,∵∠BAB′=90°,∠AOB=90°,AB=AB′,∴∠BAO+∠ABO=90°,∠BAO+∠B′AC=90°,∴∠ABO=∠BA′C,∴△ABO≌△BA′C,∴AO=B′C,∵點A(0,6),∴B′C=6,設點B′的坐標為(6,),∵點M是線段AB'的中點,點A(0,6),∴點M的坐標為(3,),∵反比例函數y=(k≠0)的圖象恰好經過點M,∴=,解得,k=12,故答案為:12.【點睛】本題考查反比例函數圖象上點的坐標特征、旋轉的性質,解答本題的關鍵是明確題意,利用數形結合的思想解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)y=x2﹣x,點D的坐標為(2,﹣);(2)t=2;(3)M點的坐標為(2,0)或(6,0).【解析】
(1)利用待定系數法求拋物線解析式;利用配方法把一般式化為頂點式得到點D的坐標;(2)連接AC,如圖①,先計算出AB=4,則判斷平行四邊形OCBA為菱形,再證明△AOC和△ACB都是等邊三角形,接著證明△OCM≌△ACN得到CM=CN,∠OCM=∠ACN,則判斷△CMN為等邊三角形得到MN=CM,于是△AMN的周長=OA+CM,由于CM⊥OA時,CM的值最小,△AMN的周長最小,從而得到t的值;(3)先利用勾股定理的逆定理證明△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),根據相似三角形的判定方法,當時,△AME∽△COD,即|t-4|:4=|t2-t|:,當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,然后分別解絕對值方程可得到對應的M點的坐標.【詳解】解:(1)把A(4,0)和B(6,2)代入y=ax2+bx得,解得,∴拋物線解析式為y=x2-x;∵y=x2-x=-2)2-;∴點D的坐標為(2,-);(2)連接AC,如圖①,AB==4,而OA=4,∴平行四邊形OCBA為菱形,∴OC=BC=4,∴C(2,2),∴AC==4,∴OC=OA=AC=AB=BC,∴△AOC和△ACB都是等邊三角形,∴∠AOC=∠COB=∠OCA=60°,而OC=AC,OM=AN,∴△OCM≌△ACN,∴CM=CN,∠OCM=∠ACN,∵∠OCM+∠ACM=60°,∴∠ACN+∠ACM=60°,∴△CMN為等邊三角形,∴MN=CM,∴△AMN的周長=AM+AN+MN=OM+AM+MN=OA+CM=4+CM,當CM⊥OA時,CM的值最小,△AMN的周長最小,此時OM=2,∴t=2;(3)∵C(2,2),D(2,-),∴CD=,∵OD=,OC=4,∴OD2+OC2=CD2,∴△OCD為直角三角形,∠COD=90°,設M(t,0),則E(t,t2-t),∵∠AME=∠COD,∴當時,△AME∽△COD,即|t-4|:4=|t2-t|:,整理得|t2-t|=|t-4|,解方程t2-t=(t-4)得t1=4(舍去),t2=2,此時M點坐標為(2,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-2(舍去);當時,△AME∽△DOC,即|t-4|:=|t2-t|:4,整理得|t2-t|=|t-4|,解方程t2-t=t-4得t1=4(舍去),t2=6,此時M點坐標為(6,0);解方程t2-t=-(t-4)得t1=4(舍去),t2=-6(舍去);綜上所述,M點的坐標為(2,0)或(6,0).【點睛】本題考查了二次函數的綜合題:熟練掌握二次函數圖象上點的坐標特征、二次函數的性質、平行四邊形的性質和菱形的判定與性質;會利用待定系數法求函數解析式;理解坐標與圖形性質;熟練掌握相似三角形的判定方法;會運用分類討論的思想解決數學問題.20、(1)30;(2)①補圖見解析;②120;③70人.【解析】分析:(1)由B類別人數及其所占百分比可得總人數;(2)①設D類人數為a,則A類人數為5a,根據總人數列方程求得a的值,從而補全圖形;②用360°乘以A類別人數所占比例可得;③總人數乘以樣本中C、D類別人數和所占比例.詳解:(1)本次調查的好友人數為6÷20%=30人,故答案為:30;(2)①設D類人數為a,則A類人數為5a,根據題意,得:a+6+12+5a=30,解得:a=2,即A類人數為10、D類人數為2,補全圖形如下:②扇形圖中,“A”對應扇形的圓心角為360°×=120°,故答案為:120;③估計大約6月1日這天行走的步數超過10000步的好友人數為150×=70人.點睛:此題主要考查了條形統計圖、扇形統計圖的綜合運用,讀懂統計圖,從統計圖中得到必要的信息是解決問題的關鍵.條形統計圖能清楚地表示出每個項目的數據.21、(1)證明見解析;(2)1-π.【解析】
(1)解直角三角形求出BC,根據勾股定理求出AB,根據三角形面積公式求出CF,根據切線的判定得出即可;(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案.【詳解】(1)過C作CF⊥AB于F.∵在Rt△ABC中,∠C=90°,AC,tanB,∴BC=2,由勾股定理得:AB1.∵△ACB的面積S,∴CF2,∴CF為⊙C的半徑.∵CF⊥AB,∴AB為⊙C的切線;(2)圖中陰影部分的面積=S△ACB﹣S扇形DCE1﹣π.【點睛】本題考查了勾股定理,扇形的面積,解直角三角形,切線的性質和判定等知識點,能求出CF的長是解答此題的關鍵.22、證明見解析.【解析】【分析】利用AAS先證明?ABH≌?DCG,根據全等三角形的性質可得AH=DG,再根據AH=AG+GH,DG=DH+GH即可證得AG=HD.【詳解】∵AB∥CD,∴∠A=∠D,∵CE∥BF,∴∠AHB=∠DGC,在?ABH和?DCG中,,∴?ABH≌?DCG(AAS),∴AH=DG,∵AH=AG+GH,DG=DH+GH,∴AG=HD.【點睛】本題考查了全等三角形的判定與性質,熟練掌握全等三角形的判定與性質是解題的關鍵.23、證明見解析.【解析】試題分析:先由平行四邊形的性質得到∠B=∠D,AB=CD,再利用垂直的定義得到∠AEB=∠GFD=90°,根據“ASA”判定△AEB≌△GFD,從而得到AB=DC,所以有DG=DC.試題解析:∵四邊形ABCD為平行四邊形,∴∠B=∠D,AB=CD,∵AE⊥BC,FG⊥CD,∴∠AEB=∠GFD=90°,在△AEB和△GFD中,∵∠B=∠D,BE=DF,∠AEB=∠GFD,∴△AEB≌△GFD,∴AB=DC,∴DG=DC.考點:1.全等三角形的判定與性質;2.平行四邊形的性質.24、(1)(2).【解析】
(1)根據一次函數解析式求出M點的坐標,再把M點的坐標代入反比例函數解析式即可;(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C,根據一次函數解析式表示出B點坐標,利用△OMB的面積=×BO×MC算出面積,利用勾股定理算出MO的長,再次利用三角形的面積公式可得OM?h,根據前面算的三角形面積可算出h的值.【詳解】解:(1)∵一次函數y1=﹣x﹣1過M(﹣2,m),∴m=1.∴M(﹣2,1).把M(﹣2,1)代入得:k=﹣2.∴反比列函數為.(2)設點B到直線OM的距離為h,過M點作MC⊥y軸,垂足為C.∵一次函數y1=﹣x﹣1與y軸交于點B,∴點B的坐標是(0,﹣1).∴.在Rt△OMC中,,∵,∴.∴點B到直線OM的距離為.25、(1)詳見解析;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 球場油漆施工合同協議
- 2025至2030年中國立竿式道口反射鏡數據監測研究報告
- 2025至2030年中國移動電話光電源電池數據監測研究報告
- 2025至2030年中國砼收縮膨脹儀(臥式)數據監測研究報告
- 2025至2030年中國甜品叉數據監測研究報告
- 2025至2030年中國洗煤機數據監測研究報告
- 2025至2030年中國柔膚營養蜜數據監測研究報告
- 2025至2030年中國德式電焊鉗數據監測研究報告
- 2025至2030年中國大型帳篷數據監測研究報告
- 2025至2030年中國多功能電夾板數據監測研究報告
- 魯濱遜漂流記選段:敘事技巧分析教案
- 圍手術期下肢靜脈血栓預防與護理
- 貴州省氣象部門招聘考試真題2024
- 《大學生就業指導》期末筆記
- 《訴衷情》(陸游)課件
- 陜西省2024年中考語文現代文閱讀真題
- 2025屆高考語文二輪復習:文言文知識點與答題技巧匯編 講義
- Unit 5 Here and now Section A Grammar 說課稿 2023-2024學年人教版英語七年級下冊
- 地下綜合管廊建設項目可行性研究報告
- 基于多源異構數據的地質知識圖譜構建與應用
- 2024年領導干部任前廉政知識考試測試題庫及答案
評論
0/150
提交評論