




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知直線y=k(x﹣1)與拋物線C:y2=4x交于A,B兩點,直線y=2k(x﹣2)與拋物線D:y2=8x交于M,N兩點,設λ=|AB|﹣2|MN|,則()A.λ<﹣16 B.λ=﹣16 C.﹣12<λ<0 D.λ=﹣122.已知是虛數單位,則復數()A. B. C.2 D.3.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.4.執行如圖所示的程序框圖后,輸出的值為5,則的取值范圍是().A. B. C. D.5.要排出高三某班一天中,語文、數學、英語各節,自習課節的功課表,其中上午節,下午節,若要求節語文課必須相鄰且節數學課也必須相鄰(注意:上午第五節和下午第一節不算相鄰),則不同的排法種數是()A. B. C. D.6.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.87.已知正三棱錐的所有頂點都在球的球面上,其底面邊長為4,、、分別為側棱,,的中點.若在三棱錐內,且三棱錐的體積是三棱錐體積的4倍,則此外接球的體積與三棱錐體積的比值為()A. B. C. D.8.若x,y滿足約束條件且的最大值為,則a的取值范圍是()A. B. C. D.9.已知向量滿足,且與的夾角為,則()A. B. C. D.10.五名志愿者到三個不同的單位去進行幫扶,每個單位至少一人,則甲、乙兩人不在同一個單位的概率為()A. B. C. D.11.已知、分別是雙曲線的左、右焦點,過作雙曲線的一條漸近線的垂線,分別交兩條漸近線于點、,過點作軸的垂線,垂足恰為,則雙曲線的離心率為()A. B. C. D.12.存在點在橢圓上,且點M在第一象限,使得過點M且與橢圓在此點的切線垂直的直線經過點,則橢圓離心率的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在直三棱柱內有一個與其各面都相切的球O1,同時在三棱柱外有一個外接球.若,,,則球的表面積為______.14.已知雙曲線(a>0,b>0)的一條漸近線方程為,則該雙曲線的離心率為_______.15.已知,,是平面向量,是單位向量.若,,且,則的取值范圍是________.16.(5分)有一道描述有關等差與等比數列的問題:有四個和尚在做法事之前按身高從低到高站成一列,已知前三個和尚的身高依次成等差數列,后三個和尚的身高依次成等比數列,且前三個和尚的身高之和為cm,中間兩個和尚的身高之和為cm,則最高的和尚的身高是____________cm.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,已知橢圓的右焦點為,,為橢圓上的兩個動點,周長的最大值為8.(Ⅰ)求橢圓的標準方程;(Ⅱ)直線經過,交橢圓于點,,直線與直線的傾斜角互補,且交橢圓于點,,,求證:直線與直線的交點在定直線上.18.(12分)如圖,在正四棱柱中,,,過頂點,的平面與棱,分別交于,兩點(不在棱的端點處).(1)求證:四邊形是平行四邊形;(2)求證:與不垂直;(3)若平面與棱所在直線交于點,當四邊形為菱形時,求長.19.(12分)如圖,四棱錐中,平面平面,若,四邊形是平行四邊形,且.(Ⅰ)求證:;(Ⅱ)若點在線段上,且平面,,,求二面角的余弦值.20.(12分)已知,函數.(1)若函數在上為減函數,求實數的取值范圍;(2)求證:對上的任意兩個實數,,總有成立.21.(12分)設函數.(1)當時,求不等式的解集;(2)若恒成立,求的取值范圍.22.(10分)11月,2019全國美麗鄉村籃球大賽在中國農村改革的發源地-安徽鳳陽舉辦,其間甲、乙兩人輪流進行籃球定點投籃比賽(每人各投一次為一輪),在相同的條件下,每輪甲乙兩人在同一位置,甲先投,每人投一次球,兩人有1人命中,命中者得1分,未命中者得-1分;兩人都命中或都未命中,兩人均得0分,設甲每次投球命中的概率為,乙每次投球命中的概率為,且各次投球互不影響.(1)經過1輪投球,記甲的得分為,求的分布列;(2)若經過輪投球,用表示經過第輪投球,累計得分,甲的得分高于乙的得分的概率.①求;②規定,經過計算機計算可估計得,請根據①中的值分別寫出a,c關于b的表達式,并由此求出數列的通項公式.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
分別聯立直線與拋物線的方程,利用韋達定理,可得,,然后計算,可得結果.【詳解】設,聯立則,因為直線經過C的焦點,所以.同理可得,所以故選:D.【點睛】本題考查的是直線與拋物線的交點問題,運用拋物線的焦點弦求參數,屬基礎題。2、A【解析】
根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.3、D【解析】
設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.4、C【解析】
框圖的功能是求等比數列的和,直到和不滿足給定的值時,退出循環,輸出n.【詳解】第一次循環:;第二次循環:;第三次循環:;第四次循環:;此時滿足輸出結果,故.故選:C.【點睛】本題考查程序框圖的應用,建議數據比較小時,可以一步一步的書寫,防止錯誤,是一道容易題.5、C【解析】
根據題意,分兩種情況進行討論:①語文和數學都安排在上午;②語文和數學一個安排在上午,一個安排在下午.分別求出每一種情況的安排方法數目,由分類加法計數原理可得答案.【詳解】根據題意,分兩種情況進行討論:①語文和數學都安排在上午,要求節語文課必須相鄰且節數學課也必須相鄰,將節語文課和節數學課分別捆綁,然后在剩余節課中選節到上午,由于節英語課不加以區分,此時,排法種數為種;②語文和數學都一個安排在上午,一個安排在下午.語文和數學一個安排在上午,一個安排在下午,但節語文課不加以區分,節數學課不加以區分,節英語課也不加以區分,此時,排法種數為種.綜上所述,共有種不同的排法.故選:C.【點睛】本題考查排列、組合的應用,涉及分類計數原理的應用,屬于中等題.6、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.7、D【解析】
如圖,平面截球所得截面的圖形為圓面,計算,由勾股定理解得,此外接球的體積為,三棱錐體積為,得到答案.【詳解】如圖,平面截球所得截面的圖形為圓面.正三棱錐中,過作底面的垂線,垂足為,與平面交點記為,連接、.依題意,所以,設球的半徑為,在中,,,,由勾股定理:,解得,此外接球的體積為,由于平面平面,所以平面,球心到平面的距離為,則,所以三棱錐體積為,所以此外接球的體積與三棱錐體積比值為.故選:D.【點睛】本題考查了三棱錐的外接球問題,三棱錐體積,球體積,意在考查學生的計算能力和空間想象能力.8、A【解析】
畫出約束條件的可行域,利用目標函數的最值,判斷a的范圍即可.【詳解】作出約束條件表示的可行域,如圖所示.因為的最大值為,所以在點處取得最大值,則,即.故選:A【點睛】本題主要考查線性規劃的應用,利用z的幾何意義,通過數形結合是解決本題的關鍵.9、A【解析】
根據向量的運算法則展開后利用數量積的性質即可.【詳解】.故選:A.【點睛】本題主要考查數量積的運算,屬于基礎題.10、D【解析】
三個單位的人數可能為2,2,1或3,1,1,求出甲、乙兩人在同一個單位的概率,利用互為對立事件的概率和為1即可解決.【詳解】由題意,三個單位的人數可能為2,2,1或3,1,1;基本事件總數有種,若為第一種情況,且甲、乙兩人在同一個單位,共有種情況;若為第二種情況,且甲、乙兩人在同一個單位,共有種,故甲、乙兩人在同一個單位的概率為,故甲、乙兩人不在同一個單位的概率為.故選:D.【點睛】本題考查古典概型的概率公式的計算,涉及到排列與組合的應用,在正面情況較多時,可以先求其對立事件,即甲、乙兩人在同一個單位的概率,本題有一定難度.11、B【解析】
設點位于第二象限,可求得點的坐標,再由直線與直線垂直,轉化為兩直線斜率之積為可得出的值,進而可求得雙曲線的離心率.【詳解】設點位于第二象限,由于軸,則點的橫坐標為,縱坐標為,即點,由題意可知,直線與直線垂直,,,因此,雙曲線的離心率為.故選:B.【點睛】本題考查雙曲線離心率的計算,解答的關鍵就是得出、、的等量關系,考查計算能力,屬于中等題.12、D【解析】
根據題意利用垂直直線斜率間的關系建立不等式再求解即可.【詳解】因為過點M橢圓的切線方程為,所以切線的斜率為,由,解得,即,所以,所以.故選:D【點睛】本題主要考查了建立不等式求解橢圓離心率的問題,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出球O1的半徑,再求出球的半徑,即得球的表面積.【詳解】解:,,,,設球O1的半徑為,由題得,所以棱柱的側棱為.由題得棱柱外接球的直徑為,所以外接球的半徑為,所以球的表面積為.故答案為:【點睛】本題主要考查幾何體的內切球和外接球問題,考查球的表面積的計算,意在考查學生對這些知識的理解掌握水平,屬于中檔題.14、【解析】
根據題意,由雙曲線的漸近線方程可得,即a=2b,進而由雙曲線的幾何性質可得cb,由雙曲線的離心率公式計算可得答案.【詳解】根據題意,雙曲線的漸近線方程為y=±x,又由該雙曲線的一條漸近線方程為x﹣2y=0,即yx,則有,即a=2b,則cb,則該雙曲線的離心率e;故答案為:.【點睛】本題考查雙曲線的幾何性質,關鍵是分析a、b之間的關系,屬于基礎題.15、【解析】
先由題意設向量的坐標,再結合平面向量數量積的運算及不等式可得解.【詳解】由是單位向量.若,,設,則,,又,則,則,則,又,所以,(當或時取等)即的取值范圍是,,故答案為:,.【點睛】本題考查了平面向量數量積的坐標運算,意在考查學生對這些知識的理解掌握水平.16、【解析】
依題意設前三個和尚的身高依次為,第四個(最高)和尚的身高為,則,解得,又,解得,又因為成等比數列,則公比,故.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)詳見解析.【解析】
(Ⅰ)由橢圓的定義可得,周長取最大值時,線段過點,可求出,從而求出橢圓的標準方程;(Ⅱ)設直線,直線,,,,.把直線與直線的方程分別代入橢圓的方程,利用韋達定理和弦長公式求出和,根據求出的值.最后直線與直線的方程聯立,求兩直線的交點即得結論.【詳解】(Ⅰ)設的周長為,則,當且僅當線段過點時“”成立.,,又,,橢圓的標準方程為.(Ⅱ)若直線的斜率不存在,則直線的斜率也不存在,這與直線與直線相交于點矛盾,所以直線的斜率存在.設,,,,,.將直線的方程代入橢圓方程得:.,,.同理,.由得,此時.直線,聯立直線與直線的方程得,即點在定直線.【點睛】本題考查橢圓的標準方程,考查直線與橢圓的位置關系,考查學生的邏輯推理能力和運算能力,屬于難題.18、(1)證明見解析;(2)證明見解析;(3).【解析】
(1)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(2)由四邊形是平行四邊形,且,則不可能是矩形,所以與不垂直;(3)先證,可得為的中點,從而得出是的中點,可得.【詳解】(1)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(2)因為,兩點不在棱的端點處,所以,又四邊形是平行四邊形,,則不可能是矩形,所以與不垂直;(3)如圖,延長交的延長線于點,若四邊形為菱形,則,易證,所以,即為的中點,因此,且,所以是的中位線,則是的中點,所以.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和線段長的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)推導出BC⊥CE,從而EC⊥平面ABCD,進而EC⊥BD,再由BD⊥AE,得BD⊥平面AEC,從而BD⊥AC,進而四邊形ABCD是菱形,由此能證明AB=AD.(Ⅱ)設AC與BD的交點為G,推導出EC//FG,取BC的中點為O,連結OD,則OD⊥BC,以O為坐標原點,以過點O且與CE平行的直線為x軸,以BC為y軸,OD為z軸,建立空間直角坐標系,利用向量法能求出二面角A-BF-D的余弦值.【詳解】(Ⅰ)證明:,即,因為平面平面,所以平面,所以,因為,所以平面,所以,因為四邊形是平行四邊形,所以四邊形是菱形,故;解法一:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,取的中點為,連接,則,因為平面平面,所以面,以為坐標原點,以過點且與平行的直線為軸,以所在直線為軸,以所在直線為軸建立空間直角坐標系.不妨設,則,,,,,,,設平面的法向量,則,取,同理可得平面的法向量,設平面與平面的夾角為,因為,所以二面角的余弦值為.解法二:(Ⅱ)設與的交點為,因為平面,平面平面于,所以,因為是中點,所以是的中點,因為,,所以平面,所以,取中點,連接、,因為,所以,故平面,所以,即是二面角的平面角,不妨設,因為,,在中,,所以,所以二面角的余弦值為.【點睛】本題考查求空間角中的二面角的余弦值,還考查由空間中線面關系進而證明線線相等,屬于中檔題.20、(1)(2)見解析【解析】
(1)求出函數的導函數,依題意可得在上恒成立,參變分離得在上恒成立.設,求出即可得到參數的取值范圍;(2)不妨設,,,利用導數說明函數在上是減函數,即可得證;【詳解】解:(1)∵∴,且函數在上為減函數,即在上恒成立,∴在上恒成立.設,∵函數在上單調遞增,∴,∴,∴實數的取值范圍為.(2)不妨設,,,則,∴.∵,∴,又,令,∴,∴在上為減函數,∴,∴,即,∴在上是減函數,∴,即,∴,∴當時,.∵,∴.【點睛】本題考查了利用導數研究函數的單調性、極值與最值,利用導數證明不等式,考查了推理能力與計算能力,屬于難題.21、(1);(2).【解析】
分析:(1)先根據絕對值幾何意義將不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 普定縣2025屆數學四年級第二學期期末調研模擬試題含解析
- 內蒙古巴彥淖爾市臨河區2025屆數學五下期末經典模擬試題含答案
- 望奎縣2025屆四年級數學第二學期期末復習檢測模擬試題含解析
- 山東省濟寧市曲阜一中重點中學2025屆新初三年級調研檢測試題語文試題含解析
- 設備租賃合同完整模板
- 碳酸鈣購銷合同
- 遼寧省大連2022-2023學年八年級上學期期末物理試題2【含答案】
- 視覺識別系統設計合同樣本
- 教育培訓合同授課講師協議書
- 綠化建設項目景觀設計咨詢服務合同版
- 體育通識題試題附答案
- 尾礦庫巡壩工崗位安全操作規程
- 儀表-ind560技術說明書METTLERTOLEDO未經書面許可不得翻印、修改或引用
- 巖溶和巖溶地面塌陷地質災害課件
- 有限空間作業安全培訓(飼料廠)課件
- 藥物化學(全套課件)
- 耳鼻咽喉科常見疾病診療常規
- 五金產品通用外觀檢驗標準
- JJG 915-2008 一氧化碳檢測報警器檢定規程-(高清現行)
- 電子營業執照下載確認書
- 質量管理的五大工具和七大方法
評論
0/150
提交評論