




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
浙江省兩校2025屆高一下數學期末預測試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設公差為-2的等差數列,如果,那么等于()A.-182 B.-78 C.-148 D.-822.在銳角中,內角,,的對邊分別為,,,,,成等差數列,,則的周長的取值范圍為()A. B. C. D.3.直線過點,且與以為端點的線段總有公共點,則直線斜率的取值范圍是()A. B. C. D.4.已知,則的值為()A. B. C. D.5.如圖,函數與坐標軸的三個交點P,Q,R滿足,,M為QR的中點,,則A的值為()A. B. C. D.6.某社區義工隊有24名成員,他們年齡的莖葉圖如下表所示,先將他們按年齡從小到大編號為1至24號,再用系統抽樣方法抽出6人組成一個工作小組,則這個小組年齡不超過55歲的人數為()3940112551366778889600123345A.1 B.2 C.3 D.47.若直線與直線平行,則的值為A. B. C. D.8.下列結論中錯誤的是()A.若,則 B.函數的最小值為2C.函數的最小值為2 D.若,則函數9.若平面α∥平面β,直線平面α,直線n?平面β,則直線與直線n的位置關系是()A.平行 B.異面C.相交 D.平行或異面10.在直角坐標平面上,點的坐標滿足方程,點的坐標滿足方程則的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.給出下列五個命題:①函數的一條對稱軸是;②函數的圖象關于點(,0)對稱;③正弦函數在第一象限為增函數;④若,則,其中;⑤函數的圖像與直線有且僅有兩個不同的交點,則的取值范圍為.以上五個命題中正確的有(填寫所有正確命題的序號)12.已知函數,關于此函數的說法:①為周期函數;②有對稱軸;③為的對稱中心;④;正確的序號是_________.13.一個三角形的三條邊成等比數列,那么,公比q的取值范圍是__________.14.設滿足約束條件若目標函數的最大值為,則的最小值為_________.15.________16.體積為8的一個正方體,其全面積與球的表面積相等,則球的體積等于________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知圓經過,,三點.(1)求圓的標準方程;(2)若過點N的直線被圓截得的弦AB的長為,求直線的傾斜角.18.在平面直角坐標系中,為坐標原點,已知向量,又點,,,.(1)若,且,求向量;(2)若向量與向量共線,常數,求的值域.19.在梯形ABCD中,,,,.(1)求AC的長;(2)求梯形ABCD的高.20.已知且,比較與的大小.21.已知為數列的前項和,且.(1)求數列的通項公式;(2)若,求數列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】
根據利用等差數列通項公式及性質求得答案.【詳解】∵{an}是公差為﹣2的等差數列,∴a3+a6+a9+…+a99=(a1+2d)+(a4+2d)+(a7+2d)+…+(a97+2d)=a1+a4+a7++a97+33×2d=50﹣132=﹣1.故選D.【點睛】本題主要考查了等差數列的通項公式及性質的應用,考查了運算能力,屬基礎題.2、A【解析】
依題意求出,由正弦定理可得,再根據角的范圍,可求出的范圍,即可求得的周長的取值范圍.【詳解】依題可知,,由,可得,所以,即,而.∴,即.故的周長的取值范圍為.故選:A.【點睛】本題主要考查正弦定理在解三角形中的應用,兩角和與差的正弦公式的應用,以及三角函數的值域求法的應用,意在考查學生的轉化能力和數學運算能力,屬于中檔題.3、C【解析】
求出,判斷當斜率不存在時是否滿足題意,滿足兩數之外;不滿足兩數之間.【詳解】,當斜率不存在時滿足題意,即【點睛】本題主要考查斜率公式的應用,屬于基礎題.4、B【解析】sin(π+α)?3cos(2π?α)=0,即:sinα+3cosα=0,①又∵sin2α+cos2α=1,②由①②聯立解得:cos2α=.∴cos2α=2cos2α?1=.故選B.5、D【解析】
用周期表示出點坐標,從而又可得點坐標,再求出點坐標后利用求得,得.【詳解】記函數的周期,則,因為,∴,是中點,則,∴,解得,∴,由得,∵,∴,,,∴,故選:D.【點睛】本題考查求三角函數的解析式,掌握正弦函數的圖象與性質是解題關鍵.6、B【解析】
求出樣本間隔,結合莖葉圖求出年齡不超過55歲的有8人,然后進行計算即可.【詳解】解:樣本間隔為,年齡不超過55歲的有8人,則這個小組中年齡不超過55歲的人數為人.故選:.【點睛】本題主要考查莖葉圖以及系統抽樣的應用,求出樣本間隔是解決本題的關鍵,屬于基礎題.7、C【解析】試題分析:由兩直線平行可知系數滿足考點:兩直線平行的判定8、B【解析】
根據均值不等式成立的條件逐項分析即可.【詳解】對于A,由知,,所以,故選項A本身正確;對于B,,但由于在時不可能成立,所以不等式中的“”實際上取不到,故選項B本身錯誤;對于C,因為,當且僅當,即時,等號成立,故選項C本身正確;對于D,由知,,所以lnx+=-2,故選項D本身正確.故選B.【點睛】本題主要考查了均值不等式及不等式取等號的條件,屬于中檔題.9、D【解析】
由面面平行的定義,可得兩直線無公共點,可得所求結論.【詳解】平面α∥平面β,可得兩平面α,β無公共點,即有直線與直線也無公共點,可得它們異面或平行,故選:D.【點睛】本題考查空間線線的位置關系,考查面面平行的定義,屬于基礎題.10、B【解析】
由點的坐標滿足方程,可得在圓上,由坐標滿足方程,可得在圓上,則求出兩圓內公切線的斜率,利用數形結合可得結果.【詳解】點的坐標滿足方程,在圓上,在坐標滿足方程,在圓上,則作出兩圓的圖象如圖,設兩圓內公切線為與,由圖可知,設兩圓內公切線方程為,則,圓心在內公切線兩側,,可得,,化為,,即,,的取值范圍,故選B.【點睛】本題主要考查直線的斜率、直線與圓的位置關系以及數形結合思想的應用,屬于綜合題.數形結合是根據數量與圖形之間的對應關系,通過數與形的相互轉化來解決數學問題的一種重要思想方法,尤其在解決選擇題、填空題時發揮著奇特功效,大大提高了解題能力與速度.運用這種方法的關鍵是運用這種方法的關鍵是正確作出曲線圖象,充分利用數形結合的思想方法能夠使問題化難為簡,并迎刃而解.二、填空題:本大題共6小題,每小題5分,共30分。11、①②⑤【解析】試題分析:①將代入可得函數最大值,為函數對稱軸;②函數的圖象關于點對稱,包括點;③,③錯誤;④利用誘導公式,可得不同于的表達式;⑤對進行討論,利用正弦函數圖象,得出函數與直線僅有有兩個不同的交點,則.故本題答案應填①②⑤.考點:三角函數的性質.【知識點睛】本題主要考查三角函數的圖象性質.對于和的最小正周期為.若為偶函數,則當時函數取得最值,若為奇函數,則當時,.若要求的對稱軸,只要令,求.若要求的對稱中心的橫坐標,只要令即可.12、①②④【解析】
由三角函數的性質及,分別對各選項進行驗證,即可得出結論.【詳解】解:由函數,可得①,可得為周期函數,故①正確;②由,,故,是偶函數,故有對稱軸正確,故②正確;③為偶數時,,為奇數時,故不為的對稱中心,故③不正確;④由,可得正確,故④正確.故答案為:①②④.【點睛】本題主要考查三角函數的值域、周期性、對稱性等相關知識,綜合性大,屬于中檔題.13、【解析】
設三邊按遞增順序排列為,其中.則,即.解得.由q≥1知q的取值范圍是1≤q<.設三邊按遞減順序排列為,其中.則,即.解得.綜上所述,.14、【解析】
試題分析:試題分析:由得,平移直線由圖象可知,當過時目標函數的最大值為,即,則,當且僅當,即時,取等號,故的最小值為.考點:1、利用可行域求線性目標函數的最值;2、利用基本不等式求最值.【方法點晴】本題主要考查可行域、含參數目標函數最優解和均值不等式求最值,屬于難題.含參變量的線性規劃問題是近年來高考命題的熱點,由于參數的引入,提高了思維的技巧、增加了解題的難度,此類問題的存在增加了探索問題的動態性和開放性,此類問題一般從目標函數的結論入手,對目標函數變化過程進行詳細分析,對變化過程中的相關量的準確定位,是求最優解的關鍵.15、【解析】
根據極限的運算法則,合理化簡、運算,即可求解.【詳解】由極限的運算,可得.故答案為:【點睛】本題主要考查了極限的運算法則的應用,其中解答熟記極限的運算法則,準確計算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.16、【解析】
由體積為的一個正方體,棱長為,全面積為,則,,球的體積為,故答案為.考點:正方體與球的表面積及體積的算法.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)30°或90°.【解析】
(1)解法一:將圓的方程設為一般式,將題干三個點代入圓的方程,解出相應的參數值,即可得出圓的一般方程,再化為標準方程;解法二:求出線段和的中垂線方程,將兩中垂線方程聯立求出交點坐標,即為圓心坐標,然后計算為圓的半徑,即可寫出圓的標準方程;(2)先利用勾股定理計算出圓心到直線的距離為,并對直線的斜率是否存在進行分類討論:一是直線的斜率不存在,得出直線的方程為,驗算圓心到該直線的距離為;二是當直線的斜率存在時,設直線的方程為,并表示為一般式,利用圓心到直線的距離為得出關于的方程,求出的值.結合前面兩種情況求出直線的傾斜角.【詳解】(1)解法一:設圓的方程為,則∴即圓為,∴圓的標準方程為;解法二:則中垂線為,中垂線為,∴圓心滿足∴,半徑,∴圓的標準方程為.(2)①當斜率不存在時,即直線到圓心的距離為1,也滿足題意,此時直線的傾斜角為90°,②當斜率存在時,設直線的方程為,由弦長為4,可得圓心到直線的距離為,,∴,此時直線的傾斜角為30°,綜上所述,直線的傾斜角為30°或90°.【點睛】本題考查圓的方程以及直線截圓所得弦長的計算,在求直線與圓所得弦長的計算中,問題的核心要轉化為弦心距的計算,弦心距的計算主要有以下兩種方式:一是利用勾股定理計算,二是利用點到直線的距離公式計算圓心到直線的距離.18、(1)或;(2)當時的值域為.時的值域為.【解析】分析:(1)由已知表示出向量,再根據,且,建立方程組求出,即可求得向量;(2)由已知表示出向量,結合向量與向量共線,常數,建立的表達式,代入,對分類討論,綜合三角函數和二次函數的圖象與性質,即可求出值域.詳解:(1),∵,且,∴,,解得,時,;時,.∴向量或.(2),∵向量與向量共線,常數,∴,∴.①當即時,當時,取得最大值,時,取得最小值,此時函數的值域為.②當即時,當時,取得最大值,時,取得最小值,此時函數的值域為.綜上所述,當時的值域為.時的值域為.點睛:本題考查了向量的坐標運算、向量垂直和共線的定理、模的計算、三角函數的值域等問題,考查了分類討論方法、推理與計算能力.19、(1)(2).【解析】
(1)首先計算,再利用正弦定理計算得到答案.(2)中,由余弦定理得,作高,在直角三角形中利用三角函數得到高的大小.【詳解】(1)在中,,.由正弦定理得:,即.(2)在中,由余弦定理得:,整理得,解得.過點D作于E,則DE為梯形ABCD的高.,,.在直角中,.即梯形ABCD的高為.【點睛】本題考查了正弦定理,余弦定理,意在考查學生的計算能力和解決問題的能力.20、詳見解析【解析】
將兩式作差可得,由、和可得大小關系.【詳解】當且時,當時,當時,綜上所述:當時,;當時,;當時,【點睛】本題
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 車間生產主管安全管理培訓
- 財務報表編制與分析課程
- 腫瘤病人介入治療及護理
- 2025至2030年中國苯乙酸鹽行業發展預測及投資策略報告
- 郁癥護理查房
- 2025至2030年中國房地產電子商務行業投資與發展分析報告
- 2025至2030年PE防靜電網格袋行業深度研究報告
- 2025年黑剛玉樹脂增強切割砂輪項目可行性研究報告
- 2025年純棉絨布項目可行性研究報告
- 2018網絡安全知識競答題庫(附帶答案)
- 宇電溫控器ai 500 501用戶手冊s 6中文說明書
- 城市發展史-中國礦業大學中國大學mooc課后章節答案期末考試題庫2023年
- 公共實訓基地信息調查報告
- 升降平臺車安全操作規程
- 廣東醒獅(文化創意)
- GB/T 498-2014石油產品及潤滑劑分類方法和類別的確定
- 人物志學習撒迦利亞201509
- GB/T 31765-2015高密度纖維板
- 學生宿舍帶班領導及值班教師巡查登記表
- GB/T 15103-2008林用絞盤機
- 議論要有針對性 課件
評論
0/150
提交評論