2022年山西省大同市鐵路一中高三數學第一學期期末達標檢測模擬試題含解析_第1頁
2022年山西省大同市鐵路一中高三數學第一學期期末達標檢測模擬試題含解析_第2頁
2022年山西省大同市鐵路一中高三數學第一學期期末達標檢測模擬試題含解析_第3頁
2022年山西省大同市鐵路一中高三數學第一學期期末達標檢測模擬試題含解析_第4頁
2022年山西省大同市鐵路一中高三數學第一學期期末達標檢測模擬試題含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是虛數單位,,,則()A. B. C.1 D.22.設集合,集合,則=()A. B. C. D.R3.過雙曲線左焦點的直線交的左支于兩點,直線(是坐標原點)交的右支于點,若,且,則的離心率是()A. B. C. D.4.公元263年左右,我國數學家劉徽發現當圓內接正多邊形的邊數無限增加時,多邊形面積可無限逼近圓的面積,并創立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數點后兩位的近似值,這就是著名的“徽率”。如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為()(參考數據:)A.48 B.36 C.24 D.125.設,滿足,則的取值范圍是()A. B. C. D.6.已知,若方程有唯一解,則實數的取值范圍是()A. B.C. D.7.已知函數是上的偶函數,且當時,函數是單調遞減函數,則,,的大小關系是()A. B.C. D.8.下圖所示函數圖象經過何種變換可以得到的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位9.在中,內角A,B,C所對的邊分別為a,b,c,且.若,的面積為,則()A.5 B. C.4 D.1610.已知函數的圖像與一條平行于軸的直線有兩個交點,其橫坐標分別為,則()A. B. C. D.11.執行如圖所示的程序框圖,則輸出的的值是()A.8 B.32 C.64 D.12812.設數列的各項均為正數,前項和為,,且,則()A.128 B.65 C.64 D.63二、填空題:本題共4小題,每小題5分,共20分。13.的角所對的邊分別為,且,,若,則的值為__________.14.某中學數學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數為81,乙組5名同學成績的中位數為73,則x-y的值為________.15.展開式中的系數為_________.16.函數的定義域為,其圖象如圖所示.函數是定義域為的奇函數,滿足,且當時,.給出下列三個結論:①;②函數在內有且僅有個零點;③不等式的解集為.其中,正確結論的序號是________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為,直線交曲線于兩點,為中點.(1)求曲線的直角坐標方程和點的軌跡的極坐標方程;(2)若,求的值.18.(12分)在直角坐標系中,直線的參數方程為(為參數),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.(1)求的普通方程和的直角坐標方程;(2)把曲線向下平移個單位,然后各點橫坐標變為原來的倍得到曲線(縱坐標不變),設點是曲線上的一個動點,求它到直線的距離的最小值.19.(12分)在等比數列中,已知,.設數列的前n項和為,且,(,).(1)求數列的通項公式;(2)證明:數列是等差數列;(3)是否存在等差數列,使得對任意,都有?若存在,求出所有符合題意的等差數列;若不存在,請說明理由.20.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.21.(12分)在中,角的對邊分別為.已知,且.(1)求的值;(2)若的面積是,求的周長.22.(10分)在四邊形中,,;如圖,將沿邊折起,連結,使,求證:(1)平面平面;(2)若為棱上一點,且與平面所成角的正弦值為,求二面角的大小.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

由,可得,通過等號左右實部和虛部分別相等即可求出的值.【詳解】解:,,解得:.故選:C.【點睛】本題考查了復數的運算,考查了復數相等的涵義.對于復數的運算類問題,易錯點是把當成進行運算.2、D【解析】試題分析:由題,,,選D考點:集合的運算3、D【解析】

如圖,設雙曲線的右焦點為,連接并延長交右支于,連接,設,利用雙曲線的幾何性質可以得到,,結合、可求離心率.【詳解】如圖,設雙曲線的右焦點為,連接,連接并延長交右支于.因為,故四邊形為平行四邊形,故.又雙曲線為中心對稱圖形,故.設,則,故,故.因為為直角三角形,故,解得.在中,有,所以.故選:D.【點睛】本題考查雙曲線離心率,注意利用雙曲線的對稱性(中心對稱、軸對稱)以及雙曲線的定義來構造關于的方程,本題屬于難題.4、C【解析】

由開始,按照框圖,依次求出s,進行判斷。【詳解】,故選C.【點睛】框圖問題,依據框圖結構,依次準確求出數值,進行判斷,是解題關鍵。5、C【解析】

首先繪制出可行域,再繪制出目標函數,根據可行域范圍求出目標函數中的取值范圍.【詳解】由題知,滿足,可行域如下圖所示,可知目標函數在點處取得最小值,故目標函數的最小值為,故的取值范圍是.故選:D.【點睛】本題主要考查了線性規劃中目標函數的取值范圍的問題,屬于基礎題.6、B【解析】

求出的表達式,畫出函數圖象,結合圖象以及二次方程實根的分布,求出的范圍即可.【詳解】解:令,則,則,故,如圖示:由,得,函數恒過,,由,,可得,,,若方程有唯一解,則或,即或;當即圖象相切時,根據,,解得舍去),則的范圍是,故選:.【點睛】本題考查函數的零點問題,考查函數方程的轉化思想和數形結合思想,屬于中檔題.7、D【解析】

利用對數函數的單調性可得,再根據的單調性和奇偶性可得正確的選項.【詳解】因為,,故.又,故.因為當時,函數是單調遞減函數,所以.因為為偶函數,故,所以.故選:D.【點睛】本題考查抽象函數的奇偶性、單調性以及對數函數的單調性在大小比較中的應用,比較大小時注意選擇合適的中間數來傳遞不等關系,本題屬于中檔題.8、D【解析】

根據函數圖像得到函數的一個解析式為,再根據平移法則得到答案.【詳解】設函數解析式為,根據圖像:,,故,即,,,取,得到,函數向右平移個單位得到.故選:.【點睛】本題考查了根據函數圖像求函數解析式,三角函數平移,意在考查學生對于三角函數知識的綜合應用.9、C【解析】

根據正弦定理邊化角以及三角函數公式可得,再根據面積公式可求得,再代入余弦定理求解即可.【詳解】中,,由正弦定理得,又,∴,又,∴,∴,又,∴.∵,∴,∵,∴由余弦定理可得,∴,可得.故選:C【點睛】本題主要考查了解三角形中正余弦定理與面積公式的運用,屬于中檔題.10、A【解析】

畫出函數的圖像,函數對稱軸方程為,由圖可得與關于對稱,即得解.【詳解】函數的圖像如圖,對稱軸方程為,,又,由圖可得與關于對稱,故選:A【點睛】本題考查了正弦型函數的對稱性,考查了學生綜合分析,數形結合,數學運算的能力,屬于中檔題.11、C【解析】

根據給定的程序框圖,逐次計算,結合判斷條件,即可求解.【詳解】由題意,執行上述程序框圖,可得第1次循環,滿足判斷條件,;第2次循環,滿足判斷條件,;第3次循環,滿足判斷條件,;第4次循環,滿足判斷條件,;不滿足判斷條件,輸出.故選:C.【點睛】本題主要考查了循環結構的程序框圖的計算與輸出,其中解答中認真審題,逐次計算,結合判斷條件求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.12、D【解析】

根據,得到,即,由等比數列的定義知數列是等比數列,然后再利用前n項和公式求.【詳解】因為,所以,所以,所以數列是等比數列,又因為,所以,.故選:D【點睛】本題主要考查等比數列的定義及等比數列的前n項和公式,還考查了運算求解的能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

先利用余弦定理求出,再用正弦定理求出并把轉化為與邊有關的等式,結合可求的值.【詳解】因為,故,因為,所以.由正弦定理可得三角形外接圓的半徑滿足,所以即.因為,解得或(舍).故答案為:.【點睛】本題考查正弦定理、余弦定理在解三角形中的應用,注意結合求解目標對所得的方程組變形整合后整體求解,本題屬于中檔題.14、【解析】

根據莖葉圖中的數據,結合平均數與中位數的概念,求出x、y的值.【詳解】根據莖葉圖中的數據,得:甲班5名同學成績的平均數為,解得;又乙班5名同學的中位數為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據莖葉圖計算中位數、平均數,考查數據分析能力,屬于簡單題.15、【解析】

變換,根據二項式定理計算得到答案.【詳解】的展開式的通項為:,,取和,計算得到系數為:.故答案為:.【點睛】本題考查了二項式定理,意在考查學生的計算能力和應用能力.16、①③【解析】

利用奇函數和,得出函數的周期為,由圖可直接判斷①;利用賦值法求得,結合,進而可判斷函數在內的零點個數,可判斷②的正誤;采用換元法,結合圖象即可得解,可判斷③的正誤.綜合可得出結論.【詳解】因為函數是奇函數,所以,又,所以,即,所以,函數的周期為.對于①,由于函數是上的奇函數,所以,,故①正確;對于②,,令,可得,得,所以,函數在區間上的零點為和.因為函數的周期為,所以函數在內有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數的圖象與性質,涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數形結合能力,屬于中等題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),;(2)或【解析】

(1)根據曲線的參數方程消去參數,可得曲線的直角坐標方程,再由,,可得點的軌跡的極坐標方程;(2)將曲線極坐標方程求,與直線極坐標方程聯立,消去,得到關于的二次方程,由的幾何意義可求出,而(1)可知,然后列方程可求出的值.【詳解】(1)曲線的直角坐標方程為,圓的圓心為,設,所以,則由,即為點軌跡的極坐標方程.(2)曲線的極坐標方程為,將與曲線的極坐標方程聯立得,,設,所以,,由,即,令,上述方程可化為,解得.由,所以,即或.【點睛】此題考查參數方程與普通方程的互化,極坐標方程與直角坐標方程的互化,利用極坐標求點的軌跡方程,考查運算求解能力,考查數形結合思想,屬于中檔題.18、(1),;(2).【解析】

(1)在直線的參數方程中消去參數可得出直線的普通方程,在曲線的極坐標方程兩邊同時乘以得,進而可化簡得出曲線的直角坐標方程;(2)根據變換得出的普通方程為,可設點的坐標為,利用點到直線的距離公式結合正弦函數的有界性可得出結果.【詳解】(1)由(為參數),得,化簡得,故直線的普通方程為.由,得,又,,.所以的直角坐標方程為;(2)由(1)得曲線的直角坐標方程為,向下平移個單位得到,縱坐標不變,橫坐標變為原來的倍得到曲線的方程為,所以曲線的參數方程為(為參數).故點到直線的距離為,當時,最小為.【點睛】本題考查曲線的參數方程、極坐標方程與普通方程的相互轉化,同時也考查了利用橢圓的參數方程解決點到直線的距離最值的求解,考查計算能力,屬于中等題.19、(1)(2)見解析(3)存在唯一的等差數列,其通項公式為,滿足題設【解析】

(1)由,可得公比,即得;(2)由(1)和可得數列的遞推公式,即可知結果為常數,即得證;(3)由(2)可得數列的通項公式,,設出等差數列,再根據不等關系來算出的首項和公差即可.【詳解】(1)設等比數列的公比為q,因為,,所以,解得.所以數列的通項公式為:.(2)由(1)得,當,時,可得①,②②①得,,則有,即,,.因為,由①得,,所以,所以,.所以數列是以為首項,1為公差的等差數列.(3)由(2)得,所以,.假設存在等差數列,其通項,使得對任意,都有,即對任意,都有.③首先證明滿足③的.若不然,,則,或.(i)若,則當,時,,這與矛盾.(ii)若,則當,時,.而,,所以.故,這與矛盾.所以.其次證明:當時,.因為,所以在上單調遞增,所以,當時,.所以當,時,.再次證明.(iii)若時,則當,,,,這與③矛盾.(iv)若時,同(i)可得矛盾.所以.當時,因為,,所以對任意,都有.所以,.綜上,存在唯一的等差數列,其通項公式為,滿足題設.【點睛】本題考查求等比數列通項公式,證明等差數列,以及數列中的探索性問題,是一道數列綜合題,考查學生的分析,推理能力.20、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數公式求這100顆芯片評測分數的平均數;(2)先求出每顆芯片的測試費用的數學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論