2022年昌都市重點中學高三數學第一學期期末檢測試題含解析_第1頁
2022年昌都市重點中學高三數學第一學期期末檢測試題含解析_第2頁
2022年昌都市重點中學高三數學第一學期期末檢測試題含解析_第3頁
2022年昌都市重點中學高三數學第一學期期末檢測試題含解析_第4頁
2022年昌都市重點中學高三數學第一學期期末檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.2.正三棱錐底面邊長為3,側棱與底面成角,則正三棱錐的外接球的體積為()A. B. C. D.3.如圖,正方體中,,,,分別為棱、、、的中點,則下列各直線中,不與平面平行的是()A.直線 B.直線 C.直線 D.直線4.陀螺是中國民間較早的娛樂工具之一,但陀螺這個名詞,直到明朝劉侗、于奕正合撰的《帝京景物略》一書中才正式出現.如圖所示的網格紙中小正方形的邊長均為1,粗線畫出的是一個陀螺模型的三視圖,則該陀螺模型的表面積為()A. B.C. D.5.如圖,在正四棱柱中,,分別為的中點,異面直線與所成角的余弦值為,則()A.直線與直線異面,且 B.直線與直線共面,且C.直線與直線異面,且 D.直線與直線共面,且6.若集合,則=()A. B. C. D.7.中國古代數學著作《算法統宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.在三棱錐中,,,則三棱錐外接球的表面積是()A. B. C. D.9.已知正四面體的棱長為,是該正四面體外接球球心,且,,則()A. B.C. D.10.為了得到函數的圖象,只需把函數的圖象上所有的點()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度11.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.12.已知x,y滿足不等式組,則點所在區域的面積是()A.1 B.2 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知圓C:經過拋物線E:的焦點,則拋物線E的準線與圓C相交所得弦長是__________.14.在平面直角坐標系中,點在單位圓上,設,且.若,則的值為________________.15.如圖,在平面四邊形ABCD中,|AC|=3,|BD|=4,則(AB16.已知集合A=,B=,若AB中有且只有一個元素,則實數a的值為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點,點滿足(其中為坐標原點),點在橢圓上.(1)求橢圓的標準方程;(2)設橢圓的右焦點為,若不經過點的直線與橢圓交于兩點.且與圓相切.的周長是否為定值?若是,求出定值;若不是,請說明理由.18.(12分)隨著時代的發展,A城市的競爭力、影響力日益卓著,這座創新引領型城市有望踏上向“全球城市”發起“沖擊”的新征程.A城市的活力與包容無不吸引著無數懷揣夢想的年輕人前來發展,目前A城市的常住人口大約為1300萬.近日,某報社記者作了有關“你來A城市發展的理由”的調查問卷,參與調查的對象年齡層次在25~44歲之間.收集到的相關數據如下:來A城市發展的理由人數合計自然環境1.森林城市,空氣清新2003002.降水充足,氣候怡人100人文環境3.城市服務到位1507004.創業氛圍好3005.開放且包容250合計10001000(1)根據以上數據,預測400萬25~44歲年齡的人中,選擇“創業氛圍好”來A城市發展的有多少人;(2)從所抽取選擇“自然環境”作為來A城市發展的理由的300人中,利用分層抽樣的方法抽取6人,從這6人中再選取3人發放紀念品.求選出的3人中至少有2人選擇“森林城市,空氣清新”的概率;(3)在選擇“自然環境”作為來A城市發展的理由的300人中有100名男性;在選擇“人文環境”作為來A城市發展的理由的700人中有400名男性;請填寫下面列聯表,并判斷是否有的把握認為性別與“自然環境”或“人文環境”的選擇有關?自然環境人文環境合計男女合計附:,.P()0.0500.0100.001k3.8416.63510.82819.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.20.(12分)已知函數.(1)求不等式的解集;(2)若對任意恒成立,求的取值范圍.21.(12分)如圖,在直三棱柱中,,,為的中點,點在線段上,且平面.(1)求證:;(2)求平面與平面所成二面角的正弦值.22.(10分)已知動圓Q經過定點,且與定直線相切(其中a為常數,且).記動圓圓心Q的軌跡為曲線C.(1)求C的方程,并說明C是什么曲線?(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關系及其判定.【思路點睛】先根據兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.2、D【解析】

由側棱與底面所成角及底面邊長求得正棱錐的高,再利用勾股定理求得球半徑后可得球體積.【詳解】如圖,正三棱錐中,是底面的中心,則是正棱錐的高,是側棱與底面所成的角,即=60°,由底面邊長為3得,∴.正三棱錐外接球球心必在上,設球半徑為,則由得,解得,∴.故選:D.【點睛】本題考查球體積,考查正三棱錐與外接球的關系.掌握正棱錐性質是解題關鍵.3、C【解析】

充分利用正方體的幾何特征,利用線面平行的判定定理,根據判斷A的正誤.根據,判斷B的正誤.根據與相交,判斷C的正誤.根據,判斷D的正誤.【詳解】在正方體中,因為,所以平面,故A正確.因為,所以,所以平面故B正確.因為,所以平面,故D正確.因為與相交,所以與平面相交,故C錯誤.故選:C【點睛】本題主要考查正方體的幾何特征,線面平行的判定定理,還考查了推理論證的能力,屬中檔題.4、C【解析】

根據三視圖可知,該幾何體是由兩個圓錐和一個圓柱構成,由此計算出陀螺的表面積.【詳解】最上面圓錐的母線長為,底面周長為,側面積為,下面圓錐的母線長為,底面周長為,側面積為,沒被擋住的部分面積為,中間圓柱的側面積為.故表面積為,故選C.【點睛】本小題主要考查中國古代數學文化,考查三視圖還原為原圖,考查幾何體表面積的計算,屬于基礎題.5、B【解析】

連接,,,,由正四棱柱的特征可知,再由平面的基本性質可知,直線與直線共面.,同理易得,由異面直線所成的角的定義可知,異面直線與所成角為,然后再利用余弦定理求解.【詳解】如圖所示:連接,,,,由正方體的特征得,所以直線與直線共面.由正四棱柱的特征得,所以異面直線與所成角為.設,則,則,,,由余弦定理,得.故選:B【點睛】本題主要考查異面直線的定義及所成的角和平面的基本性質,還考查了推理論證和運算求解的能力,屬于中檔題.6、C【解析】

求出集合,然后與集合取交集即可.【詳解】由題意,,,則,故答案為C.【點睛】本題考查了分式不等式的解法,考查了集合的交集,考查了計算能力,屬于基礎題.7、C【解析】

設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.8、B【解析】

取的中點,連接、,推導出,設設球心為,和的中心分別為、,可得出平面,平面,利用勾股定理計算出球的半徑,再利用球體的表面積公式可得出結果.【詳解】取的中點,連接、,由和都是正三角形,得,,則,則,由勾股定理的逆定理,得.設球心為,和的中心分別為、.由球的性質可知:平面,平面,又,由勾股定理得.所以外接球半徑為.所以外接球的表面積為.故選:B.【點睛】本題考查三棱錐外接球表面積的計算,解題時要分析幾何體的結構,找出球心的位置,并以此計算出球的半徑長,考查推理能力與計算能力,屬于中等題.9、A【解析】

如圖設平面,球心在上,根據正四面體的性質可得,根據平面向量的加法的幾何意義,重心的性質,結合已知求出的值.【詳解】如圖設平面,球心在上,由正四面體的性質可得:三角形是正三角形,,,在直角三角形中,,,,,,因為為重心,因此,則,因此,因此,則,故選A.【點睛】本題考查了正四面體的性質,考查了平面向量加法的幾何意義,考查了重心的性質,屬于中檔題.10、D【解析】

通過變形,通過“左加右減”即可得到答案.【詳解】根據題意,故只需把函數的圖象上所有的點向右平移個單位長度可得到函數的圖象,故答案為D.【點睛】本題主要考查三角函數的平移變換,難度不大.11、B【解析】

由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.12、C【解析】

畫出不等式表示的平面區域,計算面積即可.【詳解】不等式表示的平面區域如圖:直線的斜率為,直線的斜率為,所以兩直線垂直,故為直角三角形,易得,,,,所以陰影部分面積.故選:C.【點睛】本題考查不等式組表示的平面區域面積的求法,考查數形結合思想和運算能力,屬于常考題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出拋物線的焦點坐標,代入圓的方程,求出的值,再求出準線方程,利用點到直線的距離公式,求出弦心距,利用勾股定理可以求出弦長的一半,進而求出弦長.【詳解】拋物線E:的準線為,焦點為(0,1),把焦點的坐標代入圓的方程中,得,所以圓心的坐標為,半徑為5,則圓心到準線的距離為1,所以弦長.【點睛】本題考查了拋物線的準線、圓的弦長公式.14、【解析】

根據三角函數定義表示出,由同角三角函數關系式結合求得,而,展開后即可由余弦差角公式求得的值.【詳解】點在單位圓上,設,由三角函數定義可知,因為,則,所以由同角三角函數關系式可得,所以故答案為:.【點睛】本題考查了三角函數定義,同角三角函數關系式的應用,余弦差角公式的應用,屬于中檔題.15、-7【解析】

由題意得AB+【詳解】由題意得ABBC+∴AB+【點睛】突破本題的關鍵是抓住題中所給圖形的特點,利用平面向量基本定理和向量的加減運算,將所給向量統一用AC,16、2【解析】

利用AB中有且只有一個元素,可得,可求實數a的值.【詳解】由題意AB中有且只有一個元素,所以,即.故答案為:.【點睛】本題主要考查集合的交集運算,集合交集的運算本質是存同去異,側重考查數學運算的核心素養.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)是,【解析】

(1)設,根據條件可求出的坐標,再利用在橢圓上,代入橢圓方程求出即可;(2)設運用勾股定理和點滿足橢圓方程,求出,,再利用焦半徑公式表示出,進而求出周長為定值.【詳解】(1)設,因為,即則,即,因為均在上,代入得,解得,所以橢圓的方程為;(2)由(1)得,作出示意圖,設切點為,則,同理即,所以,又,則的周長,所以周長為定值.【點睛】標準方程的求解,橢圓中的定值問題,考查焦半徑公式的運用,考查邏輯推理能力和運算求解能力,難度較難.18、(1)(萬)(2)(3)填表見解析;有的把握認為性別與“自然環境”或“人文環境”的選擇有關【解析】

(1)在1000個樣本中選擇“創業氛圍好”來A城市發展的有300個,根據頻率公式即可求得結果.(2)由分層抽樣的知識可得,抽取6人中,4人選擇“森林城市,空氣清新”,2人選擇“降水充足,氣候怡人”求出對應的基本事件數,即可求得結果.(3)計算的值,對照臨界值表可得答案.【詳解】(1)(萬)(2)從所抽取選擇“自然環境”作為來A城市發展理由的300人中,利用分層抽樣的方法抽取6人,其中4人是選擇“森林城市,空氣清新”,2人是選擇“降水充足,氣候怡人”.記事件A為選出的3人中至少有2人選擇“森林城市,空氣清新”,則,.(3)列聯表如下自然環境人文環境合計男100400500女200300500合計3007001000,所以有的把握認為性別與“自然環境”或“人文環境”的選擇有關.【點睛】本題主要考查獨立性檢測的相關知識、分層抽樣與古典概念計算概率、考查學生的綜合分析與計算能力,難度較易.19、(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據題設和余弦定理可以求出和的值,從而求出的周長為.試題解析:(1)由題設得,即.由正弦定理得.故.(2)由題設及(1)得,即.所以,故.由題設得,即.由余弦定理得,即,得.故的周長為.點睛:在處理解三角形問題時,要注意抓住題目所給的條件,當題設中給定三角形的面積,可以使用面積公式建立等式,再將所有邊的關系轉化為角的關系,有時需將角的關系轉化為邊的關系;解三角形問題常見的一種考題是“已知一條邊的長度和它所對的角,求面積或周長的取值范圍”或者“已知一條邊的長度和它所對的角,再有另外一個條件,求面積或周長的值”,這類問題的通法思路是:全部轉化為角的關系,建立函數關系式,如,從而求出范圍,或利用余弦定理以及基本不等式求范圍;求具體的值直接利用余弦定理和給定條件即可.20、(1);(2).【解析】

(1)通過討論的范圍,分為,,三種情形,分別求出不等式的解集即可;(2)通過分離參數思想問題轉化為,根據絕對值不等式的性質求出最值即可得到的范圍.【詳解】(1)當時,原不等式等價于,解得,所以,當時,原不等式等價于,解得,所以此時不等式無解,當時

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論