




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
北師大長春附屬學(xué)校2025屆數(shù)學(xué)高一下期末質(zhì)量跟蹤監(jiān)視試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若三個實數(shù)a,b,c成等比數(shù)列,其中a=3-5,c=3+A.2 B.-2 C.±2 D.42.在等差數(shù)列中,,則()A.5 B.8 C.10 D.143.直線的傾斜角為()A. B. C. D.4.用數(shù)學(xué)歸納法時,從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.5.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.116.下列命題中不正確的是()A.平面∥平面,一條直線平行于平面,則一定平行于平面B.平面∥平面,則內(nèi)的任意一條直線都平行于平面C.一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線7.從一批產(chǎn)品中取出兩件產(chǎn)品,事件“至少有一件是次品”的對立事件是A.至多有一件是次品 B.兩件都是次品C.只有一件是次品 D.兩件都不是次品8.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.12 B.18C.24 D.309.已知四棱錐中,平面平面,其中為正方形,為等腰直角三角形,,則四棱錐外接球的表面積為()A. B. C. D.10.已知函數(shù)(,,)的部分圖象如圖所示,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若點為圓的弦的中點,則弦所在的直線的方程為___________.12.已知圓錐的軸截面是邊長為2的正三角形,則這個圓錐的表面積等于______.13.若是等比數(shù)列,,,且公比為整數(shù),則______.14.某單位共有200名職工參加了50公里徒步活動,其中青年職工與老年職工的人數(shù)比為,中年職工有24人,現(xiàn)采取分層抽樣的方法抽取50人參加對本次活動滿意度的調(diào)查,那么應(yīng)抽取老年職工的人數(shù)為________人.15.在等比數(shù)列中,,,則__________.16.已知是等比數(shù)列,,,則公比______.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知等比數(shù)列的前n項和為,,且.(1)求數(shù)列的通項公式;(2)若數(shù)列為遞增數(shù)列,數(shù)列滿足,求數(shù)列的前n項和.(3)在條件(2)下,若不等式對任意正整數(shù)n都成立,求的取值范圍.18.已知函數(shù).(1)求函數(shù)在上的單調(diào)遞增區(qū)間;(2)將函數(shù)的圖象向左平移個單位長度,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象.求證:存在無窮多個互不相同的整數(shù),使得.19.已知數(shù)列滿足,且(,且).(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項公式(3)設(shè)數(shù)列的前項和,求證:.20.設(shè)有關(guān)于的一元二次方程.(Ⅰ)若是從四個數(shù)中任取的一個數(shù),是從三個數(shù)中任取的一個數(shù),求上述方程有實根的概率.(Ⅱ)若是從區(qū)間任取的一個數(shù),是從區(qū)間任取的一個數(shù),求上述方程有實根的概率.21.現(xiàn)有8名奧運會志愿者,其中志愿者通曉日語,通曉俄語,通曉韓語.從中選出通曉日語、俄語和韓語的志愿者各1名,組成一個小組.(1)求被選中的概率;(2)求和不全被選中的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
由實數(shù)a,b,c成等比數(shù)列,得b2【詳解】由實數(shù)a,b,c成等比數(shù)列,得b2所以b=±2.故選C.【點睛】本題主要考查了等比數(shù)列的基本性質(zhì),屬于基礎(chǔ)題.2、B【解析】試題分析:設(shè)等差數(shù)列的公差為,由題設(shè)知,,所以,所以,故選B.考點:等差數(shù)列通項公式.3、C【解析】
求出直線的斜率,然后求解直線的傾斜角.【詳解】由題意知,直線的斜率為,所以直線的傾斜角為.故選:C.【點睛】本題考查直線的斜率與傾斜角的求法,屬于基礎(chǔ)題.4、C【解析】
分別求出n=k時左端的表達式,和n=k+1時左端的表達式,比較可得“n從k到k+1”左端需增乘的代數(shù)式.【詳解】當n=k時,左端=(k+1)(k+2)(k+3)…(2k),當n=k+1時,左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C.【點睛】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時左端的表達式和n=k+1時左端的表達式,是解題的關(guān)鍵.5、A【解析】
由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.6、A【解析】
逐一考查所給的選項是否正確即可.【詳解】逐一考查所給的選項:A.平面∥平面,一條直線平行于平面,可能a在平面內(nèi)或與相交,不一定平行于平面,題中說法錯誤;B.由面面平行的定義可知:若平面∥平面,則內(nèi)的任意一條直線都平行于平面,題中說法正確;C.由面面平行的判定定理可得:若一個三角形有兩條邊所在的直線分別平行于一個平面,那么該三角形所在的平面與這個平面平行,題中說法正確;D.分別在兩個平行平面內(nèi)的兩條直線只能是平行直線或異面直線,不可能相交,題中說法正確.本題選擇A選項.【點睛】本題考查了空間幾何體的線面位置關(guān)系判定與證明:(1)對于異面直線的判定要熟記異面直線的概念:把既不平行也不相交的兩條直線稱為異面直線;(2)對于線面位置關(guān)系的判定中,熟記線面平行與垂直、面面平行與垂直的定理是關(guān)鍵.7、D【解析】試題分析:根據(jù)對立事件的定義,至少有n個的對立事件是至多有n﹣1個,由事件A:“至少有一件次品”,我們易得結(jié)果.解:∵至少有n個的否定是至多有n﹣1個又∵事件A:“至少有一件次品”,∴事件A的對立事件為:至多有零件次品,即是兩件都不是次品.故答案為D.點評:本題考查的知識點是互斥事件和對立事件,互斥事件關(guān)鍵是要抓住不可能同時發(fā)生的要點,對立事件則要抓住有且只有一個發(fā)生,可以轉(zhuǎn)化命題的否定,集合的補集來進行求解.8、C【解析】試題分析:由三視圖可知,幾何體是三棱柱消去一個同底的三棱錐,如圖所示,三棱柱的高為5,消去的三棱錐的高為3,三棱錐與三棱柱的底面為直角邊長分別為3和4的直角三角形,所以幾何體的體積為V=1考點:幾何體的三視圖及體積的計算.【方法點晴】本題主要考查了幾何體的三視圖的應(yīng)用及體積的計算,著重考查了推理和運算能力及空間想象能力,屬于中檔試題,解答此類問題的關(guān)鍵是根據(jù)三視圖的規(guī)則“長對正、寬相等、高平齊”的原則,還原出原幾何體的形狀,本題的解答的難點在于根據(jù)幾何體的三視圖還原出原幾何體和幾何體的度量關(guān)系,屬于中檔試題.9、D【解析】
因為為等腰直角三角形,,故,則點到平面的距離為,而底面正方形的中心到邊的距離也為,則頂點正方形中心的距離,正方形的外接圓的半徑為,故正方形的中心是球心,則球的半徑為,所以該幾何體外接球的表面積,應(yīng)選D.10、D【解析】試題分析:由圖可知,,∴,又,∴,∴,又.∴.考點:由圖象確定函數(shù)解析式.二、填空題:本大題共6小題,每小題5分,共30分。11、;【解析】
利用垂徑定理,即圓心與弦中點連線垂直于弦.【詳解】圓標準方程為,圓心為,,∵是中點,∴,即,∴的方程為,即.故答案為.【點睛】本題考查垂徑定理.圓中弦問題,常常要用垂徑定理,如弦長(其中為圓心到弦所在直線的距離).12、【解析】
根據(jù)圓錐軸截面的定義結(jié)合正三角形的性質(zhì),可得圓錐底面半徑長和高的大小,由此結(jié)合圓錐的表面積公式,能求出結(jié)果.【詳解】∵圓錐的軸截面是正三角形,邊長等于2∴圓錐的高,底面半徑.∴這個圓錐的表面積:.故答案為.【點睛】本題給出圓錐軸截面的形狀,求圓錐的表面積,著重考查了等邊三角形的性質(zhì)和圓錐的軸截面等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.13、512【解析】
由題設(shè)條件知和是方程的兩個實數(shù)根,解方程并由公比q為整數(shù),知,,由此能夠求出公比,從而得到.【詳解】是等比數(shù)列,
,,
,,
和是方程的兩個實數(shù)根,
解方程,
得,,
公比q為整數(shù),
,,
,解得,
.故答案為:512【點睛】本題考查等比數(shù)列的通項公式的求法,利用了等比數(shù)列下標和的性質(zhì),是基礎(chǔ)題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.14、4【解析】
直接利用分層抽樣的比例關(guān)系得到答案.【詳解】青年職工與老年職工的人數(shù)比為,中年職工有24人,故老年職工為,故應(yīng)抽取老年職工的人數(shù)為.故答案為:.【點睛】本題考查了分層抽樣的相關(guān)計算,意在考查學(xué)生的計算能力.15、8【解析】
可先計算出公比,從而利用求得結(jié)果.【詳解】因為,所以,所以,則.【點睛】本題主要考查等比數(shù)列基本量的相關(guān)計算,難度很小.16、【解析】
利用等比數(shù)列的性質(zhì)可求.【詳解】設(shè)等比數(shù)列的公比為,則,故.故答案為:【點睛】一般地,如果為等比數(shù)列,為其前項和,則有性質(zhì):(1)若,則;(2)(為公比);(3)公比時,則有,其中為常數(shù)且;(4)為等比數(shù)列()且公比為.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當時:;當時:(2)(3)【解析】
(1)直接利用等比數(shù)列公式得到答案.(2)利用錯位相減法得到答案.(3)將不等式轉(zhuǎn)化為,根據(jù)雙勾函數(shù)求數(shù)列的最大值得到答案.【詳解】(1)當時:當時:(2)數(shù)列為遞增數(shù)列,,兩式相加,化簡得到(3)設(shè)原式(為奇數(shù))根據(jù)雙勾函數(shù)知:或時有最大值.時,原式時,原式故【點睛】本題考查了等比數(shù)列的通項公式,錯位相減法求前N項和,恒成立問題,將恒成立問題轉(zhuǎn)化為利用雙勾函數(shù)求數(shù)列的最大值是解題的關(guān)鍵,此題綜合性強,計算量大,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.18、(1)單調(diào)遞增區(qū)間為;(2)見解析.【解析】
(1)利用二倍角的降冪公式以及輔助角公式可將函數(shù)的解析式化簡為,然后求出函數(shù)在上的單調(diào)遞增區(qū)間,與定義域取交集可得出答案;(2)利用三角函數(shù)圖象變換得出,解出不等式的解集,可得知對中的任意一個,每個區(qū)間內(nèi)至少有一個整數(shù)使得,從而得出結(jié)論.【詳解】(1).令,解得,所以,函數(shù)在上的單調(diào)遞增區(qū)間為,,因此,函數(shù)在上的單調(diào)遞增區(qū)間為;(2)將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,再將圖象上所有點的橫坐標伸長到原來的倍(縱坐標不變),得到函數(shù)的圖象,由,對于中的任意一個,區(qū)間長度始終為,大于,每個區(qū)間至少含有一個整數(shù),因此,存在無窮多個互不相同的整數(shù),使得.【點睛】本題考查正弦型三角函數(shù)單調(diào)區(qū)間的求解,同時也考查了利用三角函數(shù)圖象變換求函數(shù)解析式,以及三角不等式整數(shù)解的個數(shù)問題,考查運算求解能力,屬于中等題.19、(1)詳見解析;(2);(3)詳見解析.【解析】
(1)用定義證明得到答案.(2)推出(3)利用錯位相減法和分組求和法得到,再證明不等式.【詳解】解:(1)由,得,即.∴數(shù)列是以為首項,1為公差的等差數(shù)列.(2)∵數(shù)列是以為首項,1為公差的等差數(shù)列,∴,∴.(3).∴,∴.【點睛】本題考查了等差數(shù)列的證明,分組求和法,錯位相減法,意在考查學(xué)生對于數(shù)列公式方法的靈活運用.20、(Ⅰ)(Ⅱ)【解析】
(1)本題是一個古典概型,可知基本事件共12個,方程當時有實根的充要條件為,滿足條件的事件中包含9個基本事件,由古典概型公式得到事件發(fā)生的概率.(2)本題是一個幾何概型,試驗的全部約束所構(gòu)成的區(qū)域為,.構(gòu)成事件的區(qū)域為,,.根據(jù)幾何概型公式得到結(jié)果.【詳解】解:設(shè)事件為“方程有實數(shù)根”.當時,方程有實數(shù)根的充要條件為.(Ⅰ)基本事件共12個:.其中第一個數(shù)表示的取值,第二個數(shù)表示的取值.事件中包含9個基本事件,事件發(fā)生的概率為.(Ⅱ)實驗的全部結(jié)果所構(gòu)成的區(qū)域為.構(gòu)成事件的區(qū)域
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 六盤水職業(yè)技術(shù)學(xué)院《流行音樂賞析》2023-2024學(xué)年第一學(xué)期期末試卷
- 昆明冶金高等專科學(xué)校《跨文化商務(wù)溝通》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西信息職業(yè)技術(shù)學(xué)院《大數(shù)據(jù)分析與可視化》2023-2024學(xué)年第二學(xué)期期末試卷
- 四川音樂學(xué)院《GIS應(yīng)用開發(fā)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西臨汾霍州三中重點中學(xué)2025年新中考數(shù)學(xué)試題一輪復(fù)習(xí)專題跟蹤檢測試題含解析
- 內(nèi)蒙古自治區(qū)通遼市2025年中考全真模擬(三)語文試題含解析
- 寧夏大學(xué)新華學(xué)院《幼兒園教育案例分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 內(nèi)蒙古醫(yī)科大學(xué)《水工鋼筋混凝土結(jié)構(gòu)及鋼結(jié)構(gòu)》2023-2024學(xué)年第二學(xué)期期末試卷
- 教育培訓(xùn)場地租賃合同書
- 合伙轉(zhuǎn)讓協(xié)議書二零二五年
- 外墻憎水巖棉保溫板施工方案doc
- 門店清潔衛(wèi)生標準
- 聯(lián)想集團財務(wù)風(fēng)險分析及對策論文財務(wù)管理專業(yè)
- 阿丁尿床了(2)
- 工會會計報表完整版(內(nèi)有6張表)
- 雙堿法脫硫設(shè)計計算
- 巴基斯坦1X150MW設(shè)備清冊
- 增值稅銷售貨物或者提供應(yīng)稅勞務(wù)清單(標準模板)
- 醫(yī)用耗材分類目錄 (低值 ╱ 高值)
- competition-model
- 退檔申請書怎樣寫
評論
0/150
提交評論