




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省鄆城一中新高考數學倒計時模擬卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執行如圖所示的程序框圖,若輸出的,則輸入的整數的最大值為()A.7 B.15 C.31 D.632.為研究語文成績和英語成績之間是否具有線性相關關系,統計兩科成績得到如圖所示的散點圖(兩坐標軸單位長度相同),用回歸直線近似地刻畫其相關關系,根據圖形,以下結論最有可能成立的是()A.線性相關關系較強,b的值為1.25B.線性相關關系較強,b的值為0.83C.線性相關關系較強,b的值為-0.87D.線性相關關系太弱,無研究價值3.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a4.函數的定義域為,集合,則()A. B. C. D.5.已知復數,其中為虛數單位,則()A. B. C.2 D.6.以下關于的命題,正確的是A.函數在區間上單調遞增B.直線需是函數圖象的一條對稱軸C.點是函數圖象的一個對稱中心D.將函數圖象向左平移需個單位,可得到的圖象7.某空間幾何體的三視圖如圖所示(圖中小正方形的邊長為1),則這個幾何體的體積是()A. B. C.16 D.328.對于任意,函數滿足,且當時,函數.若,則大小關系是()A. B. C. D.9.一個正四棱錐形骨架的底邊邊長為,高為,有一個球的表面與這個正四棱錐的每個邊都相切,則該球的表面積為()A. B. C. D.10.已知集合,則的值域為()A. B. C. D.11.已知拋物線的焦點為,準線與軸的交點為,點為拋物線上任意一點的平分線與軸交于,則的最大值為A. B. C. D.12.在的展開式中,的系數為()A.-120 B.120 C.-15 D.15二、填空題:本題共4小題,每小題5分,共20分。13.拋物線的焦點到準線的距離為.14.已知等比數列的各項都是正數,且成等差數列,則=__________.15.已知集合,,則_________.16.若冪函數的圖象經過點,則其單調遞減區間為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若是函數的極值點,求的單調區間;(2)當時,證明:18.(12分)已知圓M:及定點,點A是圓M上的動點,點B在上,點G在上,且滿足,,點G的軌跡為曲線C.(1)求曲線C的方程;(2)設斜率為k的動直線l與曲線C有且只有一個公共點,與直線和分別交于P、Q兩點.當時,求(O為坐標原點)面積的取值范圍.19.(12分)如圖,四棱錐中,底面是菱形,對角線交于點為棱的中點,.求證:(1)平面;(2)平面平面.20.(12分)某省新課改后某校為預測2020屆高三畢業班的本科上線情況,從該校上一屆高三(1)班到高三(5)班隨機抽取50人,得到各班抽取的人數和其中本科上線人數,并將抽取數據制成下面的條形統計圖.(1)根據條形統計圖,估計本屆高三學生本科上線率.(2)已知該省甲市2020屆高考考生人數為4萬,假設以(1)中的本科上線率作為甲市每個考生本科上線的概率.(i)若從甲市隨機抽取10名高三學生,求恰有8名學生達到本科線的概率(結果精確到0.01);(ii)已知該省乙市2020屆高考考生人數為3.6萬,假設該市每個考生本科上線率均為,若2020屆高考本科上線人數乙市的均值不低于甲市,求p的取值范圍.可能用到的參考數據:取,.21.(12分)對于給定的正整數k,若各項均不為0的數列滿足:對任意正整數總成立,則稱數列是“數列”.(1)證明:等比數列是“數列”;(2)若數列既是“數列”又是“數列”,證明:數列是等比數列.22.(10分)已知直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求直線的普通方程及曲線的直角坐標方程;(2)設點,直線與曲線交于兩點,求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】試題分析:由程序框圖可知:①,;②,;③,;④,;⑤,.第⑤步后輸出,此時,則的最大值為15,故選B.考點:程序框圖.2、B【解析】
根據散點圖呈現的特點可以看出,二者具有相關關系,且斜率小于1.【詳解】散點圖里變量的對應點分布在一條直線附近,且比較密集,故可判斷語文成績和英語成績之間具有較強的線性相關關系,且直線斜率小于1,故選B.【點睛】本題主要考查散點圖的理解,側重考查讀圖識圖能力和邏輯推理的核心素養.3、C【解析】
兩復數相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數的概念,屬于基礎題.4、A【解析】
根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.5、D【解析】
把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.6、D【解析】
利用輔助角公式化簡函數得到,再逐項判斷正誤得到答案.【詳解】A選項,函數先增后減,錯誤B選項,不是函數對稱軸,錯誤C選項,,不是對稱中心,錯誤D選項,圖象向左平移需個單位得到,正確故答案選D【點睛】本題考查了三角函數的單調性,對稱軸,對稱中心,平移,意在考查學生對于三角函數性質的綜合應用,其中化簡三角函數是解題的關鍵.7、A【解析】幾何體為一個三棱錐,高為4,底面為一個等腰直角三角形,直角邊長為4,所以體積是,選A.8、A【解析】
由已知可得的單調性,再由可得對稱性,可求出在單調性,即可求出結論.【詳解】對于任意,函數滿足,因為函數關于點對稱,當時,是單調增函數,所以在定義域上是單調增函數.因為,所以,.故選:A.【點睛】本題考查利用函數性質比較函數值的大小,解題的關鍵要掌握函數對稱性的代數形式,屬于中檔題..9、B【解析】
根據正四棱錐底邊邊長為,高為,得到底面的中心到各棱的距離都是1,從而底面的中心即為球心.【詳解】如圖所示:因為正四棱錐底邊邊長為,高為,所以,到的距離為,同理到的距離為1,所以為球的球心,所以球的半徑為:1,所以球的表面積為.故選:B【點睛】本題主要考查組合體的表面積,還考查了空間想象的能力,屬于中檔題.10、A【解析】
先求出集合,化簡=,令,得由二次函數的性質即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數最值的求法,換元法要注意新變量的范圍,屬于中檔題11、A【解析】
求出拋物線的焦點坐標,利用拋物線的定義,轉化求出比值,,求出等式左邊式子的范圍,將等式右邊代入,從而求解.【詳解】解:由題意可得,焦點F(1,0),準線方程為x=?1,
過點P作PM垂直于準線,M為垂足,
由拋物線的定義可得|PF|=|PM|=x+1,
記∠KPF的平分線與軸交于
根據角平分線定理可得,,當時,,當時,,,綜上:.故選:A.【點睛】本題主要考查拋物線的定義、性質的簡單應用,直線的斜率公式、利用數形結合進行轉化是解決本題的關鍵.考查學生的計算能力,屬于中檔題.12、C【解析】
寫出展開式的通項公式,令,即,則可求系數.【詳解】的展開式的通項公式為,令,即時,系數為.故選C【點睛】本題考查二項式展開的通項公式,屬基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】試題分析:由題意得,因為拋物線,即,即焦點到準線的距離為.考點:拋物線的性質.14、【解析】
根據等差中項性質,結合等比數列通項公式即可求得公比;代入表達式,結合對數式的化簡即可求解.【詳解】等比數列的各項都是正數,且成等差數列,則,由等比數列通項公式可知,所以,解得或(舍),所以由對數式運算性質可得,故答案為:.【點睛】本題考查了等差數列通項公式的簡單應用,等比數列通項公式的用法,對數式的化簡運算,屬于中檔題.15、【解析】
根據交集的定義即可寫出答案。【詳解】,,故填【點睛】本題考查集合的交集,需熟練掌握集合交集的定義,屬于基礎題。16、【解析】
利用待定系數法求出冪函數的解析式,再求出的單調遞減區間.【詳解】解:冪函數的圖象經過點,則,解得;所以,其中;所以的單調遞減區間為.故答案為:.【點睛】本題考查了冪函數的圖象與性質的應用問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)遞減區間為(-1,0),遞增區間為(2)見解析【解析】
(1)根據函數解析式,先求得導函數,由是函數的極值點可求得參數.求得函數定義域,并根據導函數的符號即可判斷單調區間.(2)當時,.代入函數解析式放縮為,代入證明的不等式可化為,構造函數,并求得,由函數單調性及零點存在定理可知存在唯一的,使得成立,因而求得函數的最小值,由對數式變形化簡可證明,即成立,原不等式得證.【詳解】(1)函數可求得,則解得所以,定義域為,在單調遞增,而,∴當時,,單調遞減,當時,,單調遞增,此時是函數的極小值點,的遞減區間為,遞增區間為(2)證明:當時,,因此要證當時,,只需證明,即令,則,在是單調遞增,而,∴存在唯一的,使得,當,單調遞減,當,單調遞增,因此當時,函數取得最小值,,,故,從而,即,結論成立.【點睛】本題考查了由函數極值求參數,并根據導數判斷函數的單調區間,利用導數證明不等式恒成立,構造函數法的綜合應用,屬于難題.18、(1);(2).【解析】
(1)根據題意得到GB是線段的中垂線,從而為定值,根據橢圓定義可知點G的軌跡是以M,N為焦點的橢圓,即可求出曲線C的方程;(2)聯立直線方程和橢圓方程,表示處的面積代入韋達定理化簡即可求范圍.【詳解】(1)為的中點,且是線段的中垂線,,又,∴點G的軌跡是以M,N為焦點的橢圓,設橢圓方程為(),則,,,所以曲線C的方程為.(2)設直線l:(),由消去y,可得.因為直線l總與橢圓C有且只有一個公共點,所以,.①又由可得;同理可得.由原點O到直線的距離為和,可得.②將①代入②得,當時,,綜上,面積的取值范圍是.【點睛】此題考查了軌跡和直線與曲線相交問題,軌跡通過已知條件找到幾何關系從而判斷軌跡,直線與曲線相交一般聯立設而不求韋達定理進行求解即可,屬于一般性題目.19、(1)詳見解析;(2)詳見解析.【解析】
(1)連結根據中位線的性質證明即可.(2)證明,再證明平面即可.【詳解】解:證明:連結是菱形對角線的交點,為的中點,是棱的中點,平面平面平面解:在菱形中,且為的中點,,,平面平面,平面平面.【點睛】本題主要考查了線面平行與垂直的判定,屬于基礎題.20、(1)60%;(2)(i)0.12(ii)【解析】
(1)利用上線人數除以總人數求解;(2)(i)利用二項分布求解;(ii)甲、乙兩市上線人數分別記為X,Y,得,.,利用期望公式列不等式求解【詳解】(1)估計本科上線率為.(2)(i)記“恰有8名學生達到本科線”為事件A,由圖可知,甲市每個考生本科上線的概率為0.6,則.(ii)甲、乙兩市2020屆高考本科上線人數分別記為X,Y,依題意,可得,.因為2020屆高考本科上線人數乙市的均值不低于甲市,所以,即,解得,又,故p的取值范圍為.【點睛】本題考查二項分布的綜合應用,考查計算求解能力,注意二項分布與超幾何分布是易混淆的知識點.21、(1)證明見詳解;(2)證明見詳解【解析】
(1)由是等比數列,由等比數列的性質可得:即可證明.(2)既是“數列”又是“數列”,可得,,則對于任意都成立,則成等比數列,設公比為,驗證得答案.【詳解】(1)證明:由是等比數列,由等比數列的性質可得:等比數列是“數列”.(2)證明:既是“數列”又是“數列”,可得,()(),()可得:對于任意都成立,即成等比數列,即成等比數列,成等比數列,成等比數列,設,()數列是“數列”時,由()可得:時,由()可得:,可得,同理可證成等比數列,數列是等比數列【點睛】本題是一道數列的新定義題目,考查了等比數列的性質、通項公式等基本知識,考查代數推理、轉化與化歸以及綜合運用數學知識探究與解決問題的能力,屬于難題.22、(1);(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年福建福州市建筑科學研究院有限公司招聘筆試參考題庫附帶答案詳解
- 2025年浙江金華田園智城人力資源有限公司招聘筆試參考題庫附帶答案詳解
- 2025年廣西鹿寨縣華宇建筑工程有限責任公司招聘筆試參考題庫含答案解析
- 江蘇蘇州公開招聘社區工作者考試高頻題庫帶答案2025年
- 2024年寧夏吳忠事業單位招聘考試真題答案解析
- 2025年廣東深圳市重大產業投資集團有限公司招聘筆試參考題庫含答案解析
- 2025年云南省滇中產業發展集團有限責任公司招聘筆試參考題庫含答案解析
- 2025年移動工作計劃(5篇)
- 提升城鄉人居環境工作總結(3篇)
- 2025校園文明禮儀廣播稿(16篇)
- 廣州市黃埔區教育局招聘事業編制教職員考試真題2024
- 2025世界防治哮喘日知識講座專題課件
- 2025年03月四川成都農業科技中心公開招聘筆試歷年典型考題(歷年真題考點)解題思路附帶答案詳解
- 2024年鄭州鐵路職業技術學院單招職業技能測試題庫必考題
- 全過程工程咨詢投標方案(技術方案)
- 2025團校入團培訓考試題庫(含答案)
- GB 14934-2016食品安全國家標準消毒餐(飲)具
- 自然辯證法(2023修訂版)課后思考題
- 年產萬噸丙烯酸工藝設計
- 復擺式顎式破碎機結構設計畢業設計
- 湘鋼轉爐傾動氧槍功能規格書新1-8-28
評論
0/150
提交評論